【題目】如圖,已知圓錐的底面半徑是2,母線(xiàn)長(zhǎng)是6.
(1)求這個(gè)圓錐的高和其側(cè)面展開(kāi)圖中∠ABC的度數(shù);
(2)如果A是底面圓周上一點(diǎn),從點(diǎn)A拉一根繩子繞圓錐側(cè)面一圈再回到A點(diǎn),求這根繩子的最短長(zhǎng)度.
【答案】(1)∠ABC=120°;(2)這根繩子的最短長(zhǎng)度是.
【解析】
(1)根據(jù)勾股定理直接求出圓錐的高,再利用圓錐側(cè)面展開(kāi)圖弧長(zhǎng)與其底面周長(zhǎng)的長(zhǎng)度關(guān)系,求出側(cè)面展開(kāi)圖中∠ABC的度數(shù)即可;
(2)首先求出BD的長(zhǎng),再利用勾股定理求出AD以及AC的長(zhǎng)即可.
(1)圓錐的高=
底面圓的周長(zhǎng)等于:2π×2=,
解得:n=120°;
(2)連結(jié)AC,過(guò)B作BD⊥AC于D,則∠ABD=60°.
由AB=6,可求得BD=3,
∴AD═,
AC=2AD=,
即這根繩子的最短長(zhǎng)度是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)和實(shí)數(shù),給出如下定義:當(dāng)時(shí),以點(diǎn)為圓心,為半徑的圓,稱(chēng)為點(diǎn)的倍相關(guān)圓.
例如,在如圖1中,點(diǎn)的1倍相關(guān)圓為以點(diǎn)為圓心,2為半徑的圓.
(1)在點(diǎn)中,存在1倍相關(guān)圓的點(diǎn)是________,該點(diǎn)的1倍相關(guān)圓半徑為________.
(2)如圖2,若是軸正半軸上的動(dòng)點(diǎn),點(diǎn)在第一象限內(nèi),且滿(mǎn)足,判斷直線(xiàn)與點(diǎn)的倍相關(guān)圓的位置關(guān)系,并證明.
(3)如圖3,已知點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),直線(xiàn)與直線(xiàn)關(guān)于軸對(duì)稱(chēng).
①若點(diǎn)在直線(xiàn)上,則點(diǎn)的3倍相關(guān)圓的半徑為________.
②點(diǎn)在直線(xiàn)上,點(diǎn)的倍相關(guān)圓的半徑為,若點(diǎn)在運(yùn)動(dòng)過(guò)程中,以點(diǎn)為圓心,為半徑的圓與反比例函數(shù)的圖象最多有兩個(gè)公共點(diǎn),直接寫(xiě)出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,連接,是的中點(diǎn),是上一點(diǎn),且,是上一動(dòng)點(diǎn),則的最大值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有四個(gè)點(diǎn)A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,則滿(mǎn)足題意的OC長(zhǎng)度為整數(shù)的值可以是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線(xiàn)L:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線(xiàn)l都經(jīng)過(guò)y軸上的一點(diǎn)P,且拋物線(xiàn)L的頂點(diǎn)Q在直線(xiàn)l上,則稱(chēng)此直線(xiàn)l與該拋物線(xiàn)L具有“一帶一路”關(guān)系.此時(shí),直線(xiàn)l叫做拋物線(xiàn)L的“帶線(xiàn)”,拋物線(xiàn)L叫做直線(xiàn)l的“路線(xiàn)”.
(1)若直線(xiàn)y=mx+1與拋物線(xiàn)y=x2﹣2x+n具有“一帶一路”關(guān)系,求m,n的值;
(2)若某“路線(xiàn)”L的頂點(diǎn)在反比例函數(shù)y=的圖象上,它的“帶線(xiàn)”l的解析式為y=2x﹣4,求此“路線(xiàn)”L的解析式;
(3)當(dāng)常數(shù)k滿(mǎn)足≤k≤2時(shí),求拋物線(xiàn)L:y=ax2+(3k2﹣2k+1)x+k的“帶線(xiàn)”l與x軸,y軸所圍成的三角形面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點(diǎn),與軸交于點(diǎn)C,過(guò)點(diǎn)A作AH⊥軸,垂足為點(diǎn)H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(,-2).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AHO的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,A,B分別在射線(xiàn)OM,ON上,且∠MON為鈍角,現(xiàn)以線(xiàn)段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).
(1)求證:△PCE≌△EDQ;
(2)延長(zhǎng)PC,QD交于點(diǎn)R.
①如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=(x﹣a﹣1)(x﹣a+1)﹣3a+7(其中x是自變量)的圖象與x軸沒(méi)有公共點(diǎn),且當(dāng)x<﹣1時(shí),y隨x的增大而減小,則實(shí)數(shù)a的取值范圍是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,現(xiàn)有兩個(gè)動(dòng)點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),其中點(diǎn)P以1cm/s的速度,沿AC向終點(diǎn)C移動(dòng);點(diǎn)Q以1.25cm/s的速度沿BC向終點(diǎn)C移動(dòng).過(guò)點(diǎn)P作PE∥BC交AD于點(diǎn)E,連結(jié)EQ.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為x秒.
(1)用含x的代數(shù)式表示AE、DE的長(zhǎng)度;
(2)當(dāng)點(diǎn)Q在BD(不包括點(diǎn)B、D)上移動(dòng)時(shí),設(shè)的面積為,求與月份的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(3)當(dāng)為何值時(shí),為直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com