分析 (1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形法則,易得$\overrightarrow{BC}=\overrightarrow{AD}=\overrightarrow b$,再由三角形法則,可求得$\overrightarrow{AC}$,又由DE=3EC,CD∥AB,根據(jù)平行線分線段成比例定理,即可得$\frac{AF}{AC}=\frac{4}{5}$,繼而求得答案;
(2)首先過(guò)點(diǎn)F作FM∥AD,F(xiàn)N∥AB,根據(jù)平行四邊形法則即可求得答案.
解答 解:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC且AD=BC,CD∥AB且CD=AB,
∴$\overrightarrow{BC}=\overrightarrow{AD}=\overrightarrow b$,
又∵$\overrightarrow{AB}=\overrightarrow a$,
∴$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow a+\overrightarrow b$,
∵DE=3EC,
∴DC=4EC,
又∵AB=CD,
∴AB=4EC,
∵CD∥AB,
∴$\frac{AF}{CF}=\frac{AB}{EC}=4$,
∴$\frac{AF}{AC}=\frac{4}{5}$,
∴$AF=\frac{4}{5}AC$,
∴$\overrightarrow{AF}=\frac{4}{5}\overrightarrow{AC}=\frac{4}{5}(\overrightarrow a+\overrightarrow b)=\frac{4}{5}\overrightarrow a+\frac{4}{5}\overrightarrow b$;
(2)如圖,過(guò)點(diǎn)F作FM∥AD,F(xiàn)N∥AB,則$\overrightarrow{AM}$,$\overrightarrow{AN}$分別是向量$\overrightarrow{AF}$在$\overrightarrow{AB}$、$\overrightarrow{AD}$方向上的分向量.
點(diǎn)評(píng) 此題考查了平面向量的知識(shí)以及平行四邊形的性質(zhì).注意掌握平行四邊形法則與三角形法則的應(yīng)用是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 130° | B. | 50° | C. | 30° | D. | 80° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com