【題目】1)如圖1,等腰直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo).

2)依據(jù)(1)的解題經(jīng)驗,請解決下面問題:

如圖2,點(diǎn),兩點(diǎn)均在軸上,且,分別以為腰在第一、第二象限作等腰連接,與軸交于點(diǎn)的長度是否發(fā)生改變?若不變,求的值;若變化,求 的取值范圍.

【答案】1;(29

【解析】

1)過BBEx軸于E,過AADx軸于D.只要證明RtBEORtADO即可解決問題;
2)過MMDy軸于D,過NNBy軸于B.只要證明BNP≌△DMP即可解決問題;

1)如圖1,過軸于,過軸于

又∵等腰直角

,

又∵

又∵

又∵在第二象限

2)如圖2,過軸于,過軸于

由(1)知:,

,

即:的值不變總等于9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:①是單項式;②幾個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)的個數(shù)是偶數(shù)個時積為正;③若x=﹣1是方程3xm0的解,則m3;④1﹣(ab+12的最大值為1;⑤長方形硬紙片繞它的一邊旋轉(zhuǎn),形成一個圓柱體,這可以說面動成體.其中正確說法的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.

理解:(1)如圖,已知是⊙上兩點(diǎn),請在圓上找出滿足條件的點(diǎn),使為“智慧三角形”(畫出點(diǎn)的位置,保留作圖痕跡);

(2)如圖,在正方形中, 的中點(diǎn), 上一點(diǎn),且,試判斷是否為“智慧三角形”,并說明理由;

運(yùn)用:(3)如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點(diǎn)是直線上的一點(diǎn),若在⊙上存在一點(diǎn),使得為“智慧三角形”,其面積的最小值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點(diǎn)內(nèi)一點(diǎn),,點(diǎn)分別在射線上,當(dāng)的周長最小時,下列結(jié)論:①;②;③的周長最小值為24;④的周長最小值為8;其中正確的序號為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段a和線段AB ( a AB)

1)以AB為一邊,畫ABC ,使AC a A=50 ,用直尺、圓規(guī)作出ABCBC的垂直平分線,分別與邊ABBC 交于點(diǎn)D、E,聯(lián)結(jié)CD ;(不寫畫法,保留作圖痕跡)

2)在(1)中,如果AB5 ,AC3 ,那么ADC 的周長等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,已知△ ABC 中,點(diǎn) D 、E BC 邊上兩點(diǎn),且 ADAE ,BAECAD 90

1)試說明△ABE 與△ACD 全等的理由;

2)如果 ADBD ,試判斷△ADE 的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天早晨,王老師從家出發(fā)步行前往學(xué)校,途中在路邊一飯店吃早餐,如圖所示是王老師從家到學(xué)校這一過程中所走的路程S(米)與時間t()之間的關(guān)系.

(1)學(xué)校離他家 米,從出發(fā)到學(xué)校,王老師共用了 分鐘;

(2)王老師吃早餐用了多少分鐘?

(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上的A、B兩點(diǎn)分別對應(yīng)數(shù)字a、b,且a、b滿足|4a-b|+a-42=0

1a= ,b= ,并在數(shù)軸上面出A、B兩點(diǎn);

2)若點(diǎn)P從點(diǎn)A出發(fā),以每秒3個單位長度向x軸正半軸運(yùn)動,求運(yùn)動時間為多少時,點(diǎn)P到點(diǎn)A的距離是點(diǎn)P到點(diǎn)B距離的2倍;

3)數(shù)軸上還有一點(diǎn)C的坐標(biāo)為30,若點(diǎn)P和點(diǎn)Q同時從點(diǎn)A和點(diǎn)B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點(diǎn)運(yùn)動,P點(diǎn)到達(dá)C點(diǎn)后,再立刻以同樣的速度返回,運(yùn)動到終點(diǎn)A.求點(diǎn)P和點(diǎn)Q運(yùn)動多少秒時,P、Q兩點(diǎn)之間的距離為4,并求此時點(diǎn)Q對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,∠A=60°,點(diǎn)E、F分別在邊AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,則EF的長度為( 。

A. B. C. D. 5

查看答案和解析>>

同步練習(xí)冊答案