如圖,直線AB分別x,y軸正半軸相交于A(a,0)和B(0,b),直y=
1
2
x+3
交于y軸與點(diǎn)E,交AB于點(diǎn)F
(1)當(dāng)a=6,b=6時,求四邊形EOAF的面積
(2)若F為線段AB的中點(diǎn),且AB=4
5
時,求證:∠BEF=∠BAO.
(1)y=
1
2
x+3

當(dāng)x=0時,y=3,
∴E(0,3),
設(shè)直線AB的解析式是y=kx+b,
把A(6,0),B(0,6)代入y=kx+b得:
0=6k+b
6=b
,
解得:
k=-1
b=6

∴直線AB的函數(shù)關(guān)系式是y=-x+6
直線EFy=
1
2
x+3
和直線AB交于點(diǎn)F,方程組
y=
1
2
x+3
y=-x+6
的解是
x=2
y=4
,
∴F(2,4),
S四邊形EOAF=S△OAB-S△EFB
=
1
2
×6×6-
1
2
×(6-3)×2,
=15.
所以四邊形EOAF的面積是15.

(2)∵F為線段AB的中點(diǎn),由三角形中位線定理得F(
1
2
a,
1
2
b),
又∵F在直線EF:y=
1
2
x+3
上,
1
2
×
1
2
a+3=
1
2
b,
a=2b-12 ①
又∵AB=4
5

∴a2+b2=(4
5
)
2
,
∴(2b-12)2+b2=80,
整理得:5b2-48b+64=0,
解得b1=
8
5
,b2=8,
當(dāng)b=
8
5
時,a<0,不合題意,∴b=
8
5
(舍去),
當(dāng)b=8時,a=4
∴A(4,0)B(0,8),
∴OE=3,BE=5
連接EA,在RT△OAE中,OE=3,OA=4,
∴EA=5
∴EA=BE=5
∴△BEA是等腰三角形,
又∵F為線段AB的中點(diǎn)
∴EF⊥AB,
∴∠BEF=90°-∠EBF,
∠BAO=90°-∠OBA,
∵∠EBF=∠OBA
∴∠BEF=∠BAO.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形PMON的邊OM,ON分別在坐標(biāo)軸上,且點(diǎn)P的坐標(biāo)為(-2,3).將矩形PMON沿x軸正方向平移4個單位,得到矩形P′M′O′N′(P?P′,M?M′,O?O′,N?N′)
(1)請?jiān)趫D中的直角坐標(biāo)系中畫出平移后的圖象;
(2)求直線OP的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面直角坐標(biāo)系內(nèi),一次函數(shù)y=kx+2的圖象與x軸相交于點(diǎn)A(-2
3
,0)
,與y軸相交于點(diǎn)B.
(1)求一次函數(shù)的解析式,并在直角坐標(biāo)系中畫出它的圖象;
(2)若以原點(diǎn)O為圓心的⊙O與直線AB相切于點(diǎn)C,求⊙O的半徑和點(diǎn)C的坐標(biāo);
(3)在x軸上是否存在點(diǎn)P,使△PAB為等腰三角形?若存在,請寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直線l1y=-
3
x+6
3
交x軸、y軸于A、B兩點(diǎn),點(diǎn)M(m,n)是線段AB上一動點(diǎn),點(diǎn)C是線段OA的三等分點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)連接CM,將△ACM繞點(diǎn)M旋轉(zhuǎn)180°,得到△A′C′M.
①當(dāng)BM=
1
2
AM時,連接A′C、AC′,若過原點(diǎn)O的直線l2將四邊形A′CAC′分成面積相等的兩個四邊形,確定此直線的解析式;
②過點(diǎn)A′作A′H⊥x軸于H,當(dāng)點(diǎn)M的坐標(biāo)為何值時,由點(diǎn)A′、H、C、M構(gòu)成的四邊形為梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)C和點(diǎn)B關(guān)于y軸對稱.
(1)求△ABC內(nèi)切圓的半徑;
(2)過O、A兩點(diǎn)作⊙M,分別交直線AB、AC于點(diǎn)D、E,求證:AD+AE是定值,并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=kx+4與坐標(biāo)軸圍成的三角形是等腰三角形,則k=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,射線OA、BA分別表示甲、乙兩人騎自行車運(yùn)動過程的一次函數(shù)的圖象,圖中s、t分別表示行駛距離和時間,則這兩人騎自行車的速度之差是( 。
A.4km/hB.5km/hC.6km/hD.8km/h

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l是一次函數(shù)y=kx+b的圖象,當(dāng)x>0時,y的取值范圍是(  )
A.y>0B.y<0C.y>-2D.y>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一次函數(shù)y=k1x+b1的圖象l1與y=k2x+b2的圖象l2相交于點(diǎn)P,則方程組
y=k1x+b1
y=k2x+b2
的解是( 。
A.
x=-2
y=3
B.
x=3
y=-2
C.
x=2
y=3
D.
x=-2
y=-3

查看答案和解析>>

同步練習(xí)冊答案