【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點(diǎn)D、E,過劣弧DE(不包括端點(diǎn)D,E)上任一點(diǎn)P⊙O的切線MNAB,BC分別交于點(diǎn)M,N,若⊙O的半徑為4cm,則Rt△MBN的周長為________cm.

【答案】8

【解析】

連接OD、OE,由切線性質(zhì)易得四邊形ODBE為正方形.由切線長定理可知MD=MP,NP=NE,Rt△MBN的周長等于BD+BE.

連接OD、OE,

由切線性質(zhì)可知OD⊥AB、OE⊥BC,再結(jié)合∠B=90°OD=OE可知四邊形ODBE為正方形BD=BE=OE=4cm.由切線長定理可知MD=MP,NP=NE,則:

Rt△MBN的周長=BM+MN+BN=BM+MD+BN+NE=BD+BE=4+4=8cm,

故答案為:4cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在邊AB、BC上,ADE=CDF.

(1)求證:AE=CF;

(2)連結(jié)DB交EF于點(diǎn)O,延長OB至點(diǎn)G,使OG=OD,連結(jié)EG、FG,判斷四邊形DEGF是否是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點(diǎn)A′的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某貨船以24海里/時(shí)的速度將一批重要物資從處運(yùn)往正東方向的M處,在點(diǎn)處測得某島在北偏東的方向上.該貨船航行分鐘后到達(dá)處,此時(shí)再測得該島在北偏東的方向上,已知在島周圍海里的區(qū)域內(nèi)有暗礁.若繼續(xù)向正東方向航行,該貨船有無觸礁危險(xiǎn)?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若m,n,p滿足m-n=8,mn+p2+16=0,求m+n+p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長為(  )

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016雙十一期間,某快遞公司計(jì)劃租用甲、乙兩種車輛快遞貨物,從貨物量來計(jì)算:若租用兩種車輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車輛完成任務(wù)天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨(dú)完成任務(wù)分別需要多少天?

(2)已知租用甲、乙兩種車輛合運(yùn)需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨(dú)租甲種車輛、單獨(dú)租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長、寬都為4m,高為3m的房間的正中央的天花板上懸掛著一只白熾燈泡,為了集中光線,加上了燈罩(如圖所示).已知燈罩深A(yù)N=8cm,燈泡離地面2m,為了使光線恰好照在墻角D、E處,燈罩的直徑BC應(yīng)為多少?(結(jié)果保留兩位小數(shù),≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鳳城商場經(jīng)銷一種高檔水果,售價(jià)為每千克50

1)連續(xù)兩次降價(jià)后售價(jià)為每千克32元,若每次下降的百分率相同.求平均下降的百分率;

2)已知這種水果的進(jìn)價(jià)為每千克40元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),若每千克漲價(jià)1元,日銷售量將減少20千克,每千克應(yīng)漲價(jià)多少元才能使每天獲得的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案