如圖,點A1、A2、A3、…、An在拋物線y=x2圖象點B1、B2、B3、…、Bn在y軸上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形(點B0是坐標原點),則△A2012B2011B2012的腰長=______.
作A1C⊥y軸,A2E⊥y軸,垂足分別為C、E.
∵△A1BOB1、△A2B1B2都是等腰直角三角形
∴B1C=B0C=DB0=A1D,B2E=B1E
設A1(a,b)∴a=b將其代入解析式y(tǒng)=x2得:
∴a=a2
解得:a=0(不符合題意)或a=1,由勾股定理得:A1B0=
2

∴B1B0=2,
過B1作B1N⊥A2F,設點A(x2,y2
可得A2N=y2-2,B1N=x2=y2-2,
又點A2在拋物線上,所以y2=x22,
(x2+2)=x22
解得x2=2,x2=-1(不合題意舍去),
∴A2B1=2
2
,
同理可得:
A3B2=3
2

A4B3=4
2

∴A2012B2011=2012
2

∴△A2012B2011B2012的腰長為:2012
2

故答案為:2012
2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為直線x=-1,其中B(1,0),C(0,-3).
(Ⅰ)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
(Ⅱ)設拋物線的頂點為D,求△ABD的面積;
(Ⅲ)求使y≥-3的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的對稱軸為直線x=1,與x軸交于A、B兩點,與y軸交于點C,其中A(-1,0)、C(0,3).
(1)求此拋物線的解析式;
(2)若此拋物線的頂點為P,將△BOC繞著它的頂點B順時針在第一象限內(nèi)旋轉,旋轉的角度為α,旋轉后的圖形為△BO′C′.
①當O′C′CP時,求α的大。
②△BOC在第一象限內(nèi)旋轉的過程中,當旋轉后的△BO′C′有一邊與BP重合時,求△BO′C′不在BP上的頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=
2
3
x2的圖象如圖所示,點A0位于坐標原點,A1,A2,A3,…,A2008在y軸的正半軸上,B1,B2,B3,…,B2008在二次函數(shù)y=
2
3
x2第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都為等邊三角形,請計算△A0B1A1的邊長=______;△A1B2A2的邊長=______;△A2007B2008A2008的邊長=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=-
1
2
x2+bx+c的圖象經(jīng)過點A(-3,-6),并與x軸交于點B(-1,0)和點C,頂點為P.
(1)求二次函數(shù)的解析式;
(2)設點M為線段OC上一點,且∠MPC=∠BAC,求點M的坐標;
說明:若(2)你經(jīng)歷反復探索沒有獲得解題思路,請你在不改變點M的位置的情況下添加一個條件解答此題,此時(2)最高得分為3分.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的交x軸于點A和點B(-2,0),與y軸的負半軸交于點C,且線段OC的長度是線段OA的2倍,拋物線的對稱軸是直線x=1.
(1)求拋物線的解析式;
(2)若過點(0,-5)且平行于x軸的直線與該拋物線交于M、N兩點,以線段MN為一邊拋物線上與M、N不重合的任意一點P(x,y)為頂點作平行四邊形,若平行四邊形的面積為S,請你求出S關于點P的縱坐標y的函數(shù)解析式;
(3)當0<x≤
10
3
時,(2)中的平行四邊形的面積是否存在最大值?若存在,請求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形OABC中,ABOC,O為坐標原點,點A在y軸正半軸上,點C在x軸正半軸上,點B的坐標為(2,2
3
),∠BCO=60°,OH⊥BC,垂足為H.動點P從點H出發(fā),沿線段HO向點O運動,動點Q從點O出發(fā),沿線段OA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度.設點P運動的時間為ts.
(1)求OH的長;
(2)若△OPQ的面積為S(平方單位),求S與t之間的函數(shù)關系式.并求t為何值時,△OPQ的面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,拋物線y=-
2
3
x2+bx+c經(jīng)過點A,B,交正x軸于點D,E是OC上的動點(不與C重合)連接EB,過B點作BF⊥BE交y軸與F
(1)求b,c的值及D點的坐標;
(2)求點E在OC上運動時,四邊形OEBF的面積有怎樣的規(guī)律性?并證明你的結論;
(3)連接EF,BD,設OE=m,△BEF與△BED的面積之差為S,問:當m為何值時S最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.
(1)拋物線及直線AC的函數(shù)關系式;
(2)設點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EFBD交拋物線于點F,以B,D,E,F(xiàn)為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.

查看答案和解析>>

同步練習冊答案