【題目】如圖,△ABC中,∠ACB=90°, CD⊥AB于點(diǎn)D,∠A=30°,BD=1.5cm ,則AB=______cm.
【答案】6
【解析】在直角三角形ABC中,由∠A的度數(shù)求出∠B的度數(shù),在直角三角形BCD中,可得出∠BCD度數(shù)為30°,根據(jù)直角三角形中,30°所對(duì)的直角邊等于斜邊的一半,得到BC=2BD,由BD的長求出BC的長,在直角三角形ABC中,同理得到AB=2BC,由BC的長即可求出AB的長.
解:∵△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,又CD⊥AB,
∴∠BCD=30°,
在Rt△BCD中,∠BCD=30°,BD=1.5cm,
可得BC=2BD=3cm,
在Rt△ABC中,∠A=30°,BC=3cm,
則AB=2BC=6cm.
故答案為:6.
“點(diǎn)睛”此題考查了含30°角直角三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握性質(zhì)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是的中線,E是AD上一點(diǎn),連接BE并延長交AC于點(diǎn)F,若EF=AF, BE=7.5, CF=6,則EF=( ).
A.2.5B.2C.1.5D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=3,AD=6,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰落在矩形ABCD的對(duì)稱軸上,則AE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點(diǎn),過O點(diǎn)作EF∥BC交AB、AC于E、F.
(1)圖①中有幾個(gè)等腰三角形?猜想:EF與BE、CF之間有怎樣的關(guān)系.
(2)如圖②,若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點(diǎn)作OE∥BC交AB于E,交AC于F.這時(shí)圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王某月手機(jī)話費(fèi)中的各項(xiàng)費(fèi)用統(tǒng)計(jì)情況如圖表所示,請(qǐng)你根據(jù)圖表信息完成下列各題
項(xiàng)目 | 月功能費(fèi) | 基本話費(fèi) | 長途話費(fèi) | 短信費(fèi) |
金額/元 | 4.8 | 48 |
|
|
(1)請(qǐng)將表格補(bǔ)充完整;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中,表示短信費(fèi)的扇形的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩種包裝盒,大盒比小盒可多裝20克某一物品.已知120克這一物品單獨(dú)裝滿小盒比單獨(dú)裝滿大盒多1盒.
(1)問小盒每個(gè)可裝這一物品多少克?
(2)現(xiàn)有裝滿這一物品兩種盒子共50個(gè).設(shè)小盒有n個(gè),所有盒子所裝物品的總量為w克.
①求w關(guān)于n的函數(shù)解析式,并寫出定義域;
②如果小盒所裝物品總量與大盒所裝物品總量相同,求所有盒子所裝物品的總量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)一幢房屋的側(cè)面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測(cè)得FG∥EH,GH=2.6m,∠FGB=65°。
(1)求證:GF⊥OC;
(2)求EF的長(結(jié)果精確到0.1m)。
(參考數(shù)據(jù):sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,CE平分∠DCB交AB于點(diǎn)E.
(1)求證:∠AEC=∠ACE;
(2)若∠AEC=2∠B,AD=2,求AB的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com