【題目】如圖,直線經(jīng)過點(diǎn),,與雙曲線在第二象限內(nèi)交于點(diǎn),且的面積為

求直線的解析式及的值;

試探究:在軸上是否存在點(diǎn),使為直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

【答案】 ;軸上存在點(diǎn),使為直角三角形,點(diǎn)的坐標(biāo)為

【解析】

(1)根據(jù)待定系數(shù)法即可求得直線AB的解析式,然后根據(jù)△AOC的面積為3,求得C的橫坐標(biāo)為-,代入AB的解析式即可求得C的坐標(biāo),從而求得m的值.
(2)分兩種情況分別討論即可求得.

∵直線經(jīng)過點(diǎn),

∴設(shè)直線的解析式為

,解得,

∴直線的解析式為

的面積為,

,即,解得,

的橫坐標(biāo)為,

代入得,,

∵雙曲線在第二象限與直線交于點(diǎn),

;設(shè)

當(dāng)時(shí),

,

,,

,

,解得,

;

當(dāng)時(shí),則

,

,

綜上,在軸上存在點(diǎn),使為直角三角形,點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,若∠A=10°,∠PMQ=40°,以PM為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是________邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化工材料經(jīng)銷公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克30元。物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元。經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100。在銷售過程中,每天還要支付其他費(fèi)用450元。

(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。

(2)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式。

(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線相交于、兩點(diǎn),過點(diǎn)軸于點(diǎn),連接,則的面積為(

A. 3 B. 1.5 C. 4.5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形放置在平面直角坐標(biāo)系中,,所在直線為軸,所在直線為軸,反比例函數(shù)的圖象經(jīng)過的中點(diǎn),并且與交于點(diǎn),已知.則的長(zhǎng)等于(

A. 2.5 B. 2 C. 1.5 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC90°E為邊BC上的點(diǎn),且ABAED為線段BE的中點(diǎn),過點(diǎn)EEFAE,過點(diǎn)AAFBC,且AF、EF相交于點(diǎn)F

1)求證:∠C=∠BAD;

2)求證:ACEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB30°M,N分別是OA,OB上的定點(diǎn),PQ分別是邊OB,OA上的動(dòng)點(diǎn),如果記AMP,ONQ,當(dāng)MPPQQN最小時(shí),則的數(shù)量關(guān)系是_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的直徑,點(diǎn)延長(zhǎng)線上一點(diǎn),,的弦,

(1)求證:直線的切線;

(2)若,垂足為,的半徑為,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C,D兩點(diǎn).點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn).

(1)求此拋物線的解析式;

(2)當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo);

(3)拋物線上是否存在一點(diǎn)Q(QB不重合),使CDQ的面積等于BCD的面積?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案