【題目】已知:點A、C、B不在同一條直線上,AD∥BE.
(1)如圖①,當(dāng)∠A=48°,∠B=128°時,求∠C的度數(shù);
(2)如圖②,AQ、BQ分別為∠DAC、∠EBC的平分線所在直線,試探究∠C與∠AQB的數(shù)量關(guān)系;
(3)如圖③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接寫出∠DAC:∠ACB:∠CBE的值.
【答案】(1)100°(2)2∠AQB+∠C=180°(3)1:2:2
【解析】
(1)過點C作CF∥AD,則CF∥BE,根據(jù)平行線的性質(zhì)可得出∠ACF=∠A、∠BCF=180°∠B,將其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度數(shù);
(2)過點Q作QM∥AD,則QM∥BE,根據(jù)平行線的性質(zhì)、角平分線的定義可得出∠AQB=(∠CBE∠CAD),結(jié)合(1)的結(jié)論可得出2∠AQB+∠C=180°;
(3)由(2)的結(jié)論可得出∠CAD=∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,聯(lián)立①②可求出∠CAD、∠CBE的度數(shù),再結(jié)合(1)的結(jié)論可得出∠ACB的度數(shù),將其代入∠DAC:∠ACB:∠CBE中可求出結(jié)論.
(1)在圖①中,過點C作CF∥AD,則CF∥BE.
∵CF∥AD∥BE,
∴∠ACF=∠A,∠BCF=180°∠B,
∴∠ACB=∠ACF+∠BCF=180°(∠B∠A)=120°.
(2)在圖②中,過點Q作QM∥AD,則QM∥BE.
∵QM∥AD,QM∥BE,
∴∠AQM=∠NAD,∠BQM=∠EBQ.
∵AQ平分∠CAD,BQ平分∠CBE,
∴∠NAD=∠CAD,∠EBQ=∠CBE,
∴∠AQB=∠BQM∠AQM=(∠CBE∠CAD).
∵∠C=180°(∠CBE∠CAD)=180°2∠AQB,
∴2∠AQB+∠C=180°.
(3)∵AC∥QB,
∴∠AQB=∠CAP=∠CAD,∠ACP=∠PBQ=∠CBE,
∴∠ACB=180°∠ACP=180°∠CBE.
∵2∠AQB+∠ACB=180°,
∴∠CAD=∠CBE.
又∵QP⊥PB,
∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,
∴∠ACB=180°(∠CBE∠CAD)=120°,
∴∠DAC:∠ACB:∠CBE=60°:120°:120°=1:2:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊為邊在BC的同側(cè)分別作三個等邊三角形△ABD,△BCE,△ACF,請解答下列問題:
(1)求證:四邊形AFED是平行四邊形;
(2)當(dāng)△ABC滿足 時,四邊形AFED是矩形.
當(dāng)△ABC滿足 時,四邊形AFED是菱形.
當(dāng)△ABC滿足 時,四邊形AFED是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D在BC上,∠ADB=∠BAC,BE平分∠ABC,過點E作EF/AD,交BC于點F
(1)求證:∠BAD=∠C;
(2)若∠C=20°,∠BAC=110°,求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABED是正方形,DB⊥BC,點E為線段DC的中點,
(1)求證:BD2=ADDC.
(2)連接AE,求證:ABCE為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情期間,某口罩廠為生產(chǎn)更多的口罩滿足疫情防控需求,決定撥款456萬元購進(jìn)A,B兩種型號的口罩機(jī)共30臺.兩種型號口罩機(jī)的單價和工作效率分別如下表:
單價/萬元 | 工作效率/(只/h) | |
A種型號 | 16 | 4000 |
B種型號 | 14.8 | 3000 |
(1)求購進(jìn)A,B兩種型號的口罩生產(chǎn)線各多少臺.
(2)現(xiàn)有200萬只口罩的生產(chǎn)任務(wù),計劃安排新購進(jìn)的口罩機(jī)共15臺同時進(jìn)行生產(chǎn).若工廠的工人每天工作8h,則至少租用A種型號的口罩機(jī)多少臺才能在5天內(nèi)完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、圖(1)XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX =__________°;
②如圖(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);(寫出解答過程)
③如圖(4),∠ABD,∠ACD的10等分線相交于點G1、G2、G9,若∠BDC=140°,∠BG1C=77°,則∠A的度數(shù)=__________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+4與x軸相交于點A,與y軸相交于點B.
(1)求△AOB的面積;
(2)過B點作直線BC與x軸相交于點C,若△ABC的面積是16,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點D,E,F(xiàn)分別在BC,AB,CA上,且DE∥CA,DF∥BA,連接EF,則下列三種說法:
①如果EF=AD,那么四邊形AEDF是矩形
②如果EF⊥AD,那么四邊形AEDF是菱形
③如果AD⊥BC且AB=AC,那么四邊形AEDF是正方形
其中正確的有( )
A.3個
B.2個
C.1個
D.0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,E,F分別在三邊上,且BE=CD,BD=CF,G為EF的中點.
(1)若∠A=40°,求∠B的度數(shù);
(2)試說明:DG垂直平分EF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com