【題目】如圖,已知,以為直徑,為圓心的半圓交于點(diǎn),點(diǎn)為弧的中點(diǎn),連接于點(diǎn),的角平分線,且,垂足為點(diǎn).判斷直線的位置關(guān)系,并說明理由;

【答案】AB是圓O的切線.理由見解析;

【解析】

連接CE,推出ADCE,得出∠ECM=DAC=DAB=EBC,根據(jù)∠AHB=90°推出∠DAB+ ABE=90°.代入推出∠ABE+EBC=90°,根據(jù)切線的判定推出即可;

直線ABO的位置關(guān)系是相切,

理由是:連接CE,

BC為直徑,

∴∠BEC=90°,

ADBE,

ADEC,

∴∠ACE=CAD

∵弧EF=CE,

∴∠FCE=CBE

∴∠CAD=CBE,

AD平分∠BAC,

∴∠CAD=BAD,

∴∠CBE=BAD,

∴∠BAD+ABE=90°,

∴∠CBE+ABE=90°,

即∠ABC=90°,

又∵AB經(jīng)過直徑的外端,

AB是圓O的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A0,1)、點(diǎn)B0,1+t)、C0,1t)(t0),點(diǎn)P在以D3,5)為圓心,1為半徑的圓上運(yùn)動,且始終滿足∠BPC=90°,則t的最小值是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,對角線的垂直平分線分別交、、于點(diǎn)、、,連接.

1)求證:四邊形為菱形.

2)若,,求菱形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為10的⊙中,弦,所對的圓心角分別是,若,,則弦的長等于(  )

A. 18B. 16C. 10D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,探究線段AC,BCCD之間的數(shù)量關(guān)系.

小吳同學(xué)探究此問題的思路是:將BCD繞點(diǎn)D,逆時針旋轉(zhuǎn)90°AED處,點(diǎn)B,C分別落在點(diǎn)A,E處(如圖②),易證點(diǎn)C,A,E在同一條直線上,并且CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD

簡單應(yīng)用:

1)在圖①中,若AC=2,BC=4,則CD=

2)如圖③,AB是⊙O的直徑,點(diǎn)CD在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的長.

拓展規(guī)律:

3)如圖4,ABC中,∠ACB=90°,AC=BC,點(diǎn)PAB的中點(diǎn),若點(diǎn)E滿足AE=AC,CE=CA,且點(diǎn)E在直線AC的左側(cè)時,點(diǎn)QAE的中點(diǎn),則線段PQAC的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對函數(shù)yx22|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下:

(1)自變量x的取值范圍是 xy的幾組對應(yīng)值列表如下:

x

3

2

1

0

1

2

3

y

3

0

1

0

1

0

3

2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該圖象的另一部分并觀察函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì).

(3)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):關(guān)于x的方程2x24|x|a4個實(shí)數(shù)根,則a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,.

1)點(diǎn)從點(diǎn)開始沿邊向的速度移動,點(diǎn)點(diǎn)開始沿邊向點(diǎn)的速度移動.如果點(diǎn),分別從同時出發(fā),經(jīng)過幾秒,的面積等于?

2)點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動,點(diǎn)點(diǎn)開始沿邊向點(diǎn)的速度移動.如果點(diǎn),分別從,同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運(yùn)動時間;若不能,請說明理由.

3)若點(diǎn)沿線段方向從點(diǎn)出發(fā)以的速度向點(diǎn)移動,點(diǎn)沿射線方向從點(diǎn)出發(fā)以的速度移動,同時出發(fā),問幾秒后,的面積為?

查看答案和解析>>

同步練習(xí)冊答案