【題目】舍利生生塔位于晉祠南瑞,建于隋開皇年間,宋代重修,清乾隆十六年(1751年)重建.七屋八角,琉璃瓦頂,遠遠望去,高聳的古塔,映襯著藍天白云,甚是壯觀.原塔內每層均有佛像,開4門8窗,憑窗遠眺,晉祠內外美景可一覽無余.如果在夕陽西下時欣賞寶塔,還會出現——天云錦、滿塔光輝的壯麗景觀,被譽為“寶塔披霞”.某數學“綜合與實踐”小組的同學把“測量舍利生生塔高”作為一項課題活動,他們制定了測量方案,并利用課余時間完成了實地測量,測量結果如表:
課題 | 測量舍利生生塔高 | |||
測量示意圖 | 說明:某同學在地面上選擇點C,使用手持測角儀,測得此時樓頂A的仰角∠AHE=α,沿CB方向前進到點D,測量出C,D之間的距離CD=xm,在點D使用手持測角儀,測得此時樓頂A的仰角∠AFE=β | |||
測量數據 | α的度數 | β的度數 | CD的長度 | 該同學眼睛離地面的距離HC |
24° | 37° | 32m | 1.76m | |
… | … |
(1)請幫助該小組的同學根據上表中的測量數據,求塔高AB.(結果精確到1m;參考數據:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(2)該小組要寫出一份完整的課題活動報告,除上表中的項目外,你認為還需要補充哪些項目?(寫出一個即可)
【答案】(1)約為38m;(2)還需要補充的項目為:計算過程,人員分工,指導教師,活動感受等.(答案不唯一,合理即可.)
【解析】
(1)易知四邊形HCDF是矩形,四邊形FDBE是矩形,結合三角函數的定義求出AE和BE長即可得出答案;
(2)如要補充:計算過程,人員分工,指導教師,活動感受等.(答案不唯一,合理即可.)
解:(1)在Rt△AFE中,tan∠AFE=,∠AFE=37°,
∴,
∵∠HCD=90°,∠FDC=90°,
∴HC∥FD,
又∵HC=FD,
∴四邊形HCDF是矩形,
∴HF=CD=32m.
在Rt△AHE中,tan∠AHE==≈0.45,
解得:AE=36.
同理,四邊形FDBE是矩形,則BE=FD=HC=1.76m,
∴AB=AE+BE=36+1.76=37.76≈38(m).
答:塔高AB約為38m.
(2)還需要補充的項目為:計算過程,人員分工,指導教師,活動感受等.(答案不唯一,合理即可.)
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形的頂點,動點,同時從點出發(fā),點沿射線方向以每秒個單位的速度運動,點沿線段方向以每秒個單位的速度運動,當點到達點時,點,同時停止運動,連接,設運動時間為(秒).
(1)求證;
(2)當點運動到點時,若雙曲線的圖象恰好過點,試求的值;
(3)連接,當為何值時,為等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3,BC=4,O是BC的中點,到點O的距離等于BC的所有點組成的圖形記為G,圖形G與AB交于點D.
(1)補全圖形并求線段AD的長;
(2)點E是線段AC上的一點,當點E在什么位置時,直線ED與 圖形G有且只有一個交點?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形紙片ABCD沿直線BE折疊,點C恰好落在點G處,連接BG并延長,交CD于點H,延長EG交AD于點F,連接FH.若AF=FD=6cm,則FH的長為_____cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正比例函數y1=k1x的圖象與反比例函數y2=(x>0)的圖象相交于點A(,2),點B是反比例函數圖象上一點,它的橫坐標是3,連接OB,AB,則△AOB的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+b分別與x軸、y軸交于點A、B,且點A的坐標為(4,0),四邊形ABCD是正方形.
(1)填空:b= ;
(2)求點D的坐標;
(3)點M是線段AB上的一個動點(點A、B除外),試探索在x上方是否存在另一個點N,使得以O、B、M、N為頂點的四邊形是菱形?若不存在,請說明理由;若存在,請求出點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為進一步發(fā)展基礎教育,自2014年以來,某縣加大了教育經費的投入,2014年該縣投入教育經費6000萬元。2016年投入教育經費8640萬元。假設該縣這兩年投入教育經費的年平均增長率相同。
(1)求這兩年該縣投入教育經費的年平均增長率;
(2)若該縣教育經費的投入還將保持相同的年平均增長率,請你預算2017年該縣投入教育經費多少萬元。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校將舉辦“心懷感恩·孝敬父母”的活動,為此,校學生會就全校1 000名同學暑假期間平均每天做家務活的時間,隨機抽取部分同學進行調查,并繪制成如下條形統(tǒng)計圖.
(1)本次調查抽取的人數為_______,估計全校同學在暑假期間平均每天做家務活的時間在40分鐘以上(含40分鐘)的人數為_______;
(2)校學生會擬在表現突出的甲、乙、丙、丁四名同學中,隨機抽取兩名同學向全校匯報.請用樹狀圖或列表法表示出所有可能的結果,并求恰好抽到甲、乙兩名同學的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com