如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB為⊙O的直徑.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以3cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t,求:
(1)t分別為何值時(shí),四邊形PQCD為平行四邊形、等腰梯形?
(2)t分別為何值時(shí),直線PQ與⊙O相切、相離、相交?

【答案】分析:(1)若PQCD為平行四邊形,則需QC=PD,即3t=24-t,得t=6秒;同理只要PQ=CD,PD≠Q(mào)C,四邊形PQCD為等腰梯形,如圖,過(guò)P、D分別作BC的垂線,交BC于E、F點(diǎn),則EF=PD,QE=FC=2,即3t-(24-t)=4,解得t=7秒,問(wèn)題得解.
(2)因?yàn)辄c(diǎn)P、Q分別在線段AD和BC上的運(yùn)動(dòng),可以統(tǒng)一到直線PQ的運(yùn)動(dòng)中,要探求時(shí)間t對(duì)直線PQ與⊙O位置關(guān)系的影響,可先求出t為何值時(shí),直線PQ與⊙O相切這一整個(gè)運(yùn)動(dòng)過(guò)程中的一瞬,再結(jié)合PQ的初始與終了位置一起加以考慮,設(shè)運(yùn)動(dòng)t秒時(shí),直線PQ與⊙O相切于點(diǎn)G,如圖因?yàn),AB=8,AP=t,BQ=26-3t,所以,PQ=26-2t,因而,過(guò)p做PH⊥BC,得HQ=26-4t,于是由勾股定理,可的關(guān)于t的一元二次方程,則t可求.問(wèn)題得解.
解答:解:(1)因?yàn)锳D∥BC,
所以,只要QC=PD,則四邊形PQCD為平行四邊形,
此時(shí)有,3t=24-t,
解得t=6,
所以t=6秒時(shí),四邊形PQCD為平行四邊形.
又由題意得,只要PQ=CD,PD≠Q(mào)C,四邊形PQCD為等腰梯形,
過(guò)P、D分別作BC的垂線交BC于E、F兩點(diǎn),
則由等腰梯形的性質(zhì)可知,EF=PD,QE=FC=2,
所以3t-(24-t)=4,
解得t=7秒所以當(dāng)t=7秒時(shí),四邊形PQCD為等腰梯形.

(2)設(shè)運(yùn)動(dòng)t秒時(shí),直線PQ與⊙O相切于點(diǎn)G,過(guò)P作PH⊥BC于點(diǎn)H,
則PH=AB=8,BH=AP,
可得HQ=26-3t-t=26-4t,
由切線長(zhǎng)定理得,AP=PG,QG=BQ,
則PQ=PG+QG=AP+BQ=t+26-3t=26-2t
由勾股定理得:PQ2=PH2+HQ2,即 (26-2t)2=82+(26-4t)2
化簡(jiǎn)整理得 3t2-26t+16=0,
解得t1=或 t2=8,
所以,當(dāng)t1=或 t2=8時(shí)直線PQ與⊙O相切.
因?yàn)閠=0秒時(shí),直線PQ與⊙O相交,
當(dāng)t=秒時(shí),Q點(diǎn)運(yùn)動(dòng)到B點(diǎn),P點(diǎn)尚未運(yùn)動(dòng)到D點(diǎn),但也停止運(yùn)動(dòng),直線PQ也與⊙O相交,
所以可得以下結(jié)論:
當(dāng)t1=或 t2=8秒時(shí),直線PQ與⊙O相切;
當(dāng)0≤t<或8<t≤(單位秒)時(shí),直線PQ與⊙O相交;
當(dāng)<t<8時(shí),直線PQ與⊙O相離.
點(diǎn)評(píng):此題主要考查了直線與圓的位置關(guān)系,若圓的半徑為r,圓心到直線的距離為d,d>r時(shí),圓和直線相離;d=r時(shí),圓和直線相切;d<r時(shí),圓和直線相交.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點(diǎn).將直角梯形ABCD沿對(duì)角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點(diǎn)以2cm/秒的速度在線段AB上由A向B勻速運(yùn)動(dòng),E點(diǎn)同時(shí)以1cm/秒的速度在線段BC上由B向C勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長(zhǎng);
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點(diǎn)F,交CD于點(diǎn)G、H.過(guò)點(diǎn)F引⊙O的切線交BC于點(diǎn)N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點(diǎn)E、F分別是腰AD、BC上的動(dòng)點(diǎn),點(diǎn)G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點(diǎn)F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時(shí)BF的長(zhǎng);
(3)當(dāng)∠ABC=60°時(shí),矩形AEFG能否為正方形?若能,求出其邊長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以2cm/s的速度向點(diǎn)B移動(dòng),點(diǎn)Q以1cm/s的速度向點(diǎn)D移動(dòng),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)經(jīng)過(guò)幾秒鐘,點(diǎn)P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時(shí)刻,使得PD恰好平分∠APQ?若存在,求出此時(shí)的移動(dòng)時(shí)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案