操作:如圖①,點O為線段MN的中點,直線PQ與MN相交于點O,請利用圖①畫出一對以點O為對稱中心的全等三角形。

根據(jù)上述操作得到的經(jīng)驗完成下列探究活動:(本題12分)
探究一:如圖②,在四邊形ABCD中,AB∥DC,E為BC邊的中點,∠BAE=∠EAF,AF與DC的延長線相交于點F。試探究線段AB與AF、CF之間的等量關系,并證明你的結論;

探究二:如圖③,DE、BC相交于點E,BA交DE于點A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB。若AB=5,CF=1,求DF的長度。
解:(1)如圖

(2)結論:AB=AF+CF.
證明:分別延長AE、DF交于點M.

∵E為BC的中點,
∴BE=CE,
∵AB∥CD,
∴∠BAE=∠M,
在△ABE與△MCE中,

∴△ABE≌△MCE,
∴AB=MC,
又∵∠BAE=∠EAF,
∴∠M=∠EAF,
∴MF=AF,
又∵MC=MF+CF,
∴AB=AF+CF;
(3)分別延長DE、CF交于點G.

∵AB∥CF,
∴∠B=∠C,∠BAE=∠G,
∴△ABE∽△GCE,

∵AB=5,
∴GC=10,
∵FC=1,
∴GF=9,
∵AB∥CF,
∴∠BAE=∠G,
又∵∠BAE=∠EDF,
∴∠G=∠EDF,
∴GF=DF,
∴DF=9.
(1)根據(jù)全等三角形的判定中的邊角邊為作圖的理論依據(jù),來畫出全等三角形.
(2)本題可通過作輔助線將AB,F(xiàn)C,AF構建到一個相關聯(lián)的三角形中,可延長AE、DF交于點M,不難證明△ABE≌△MCE,那么AB=CF,現(xiàn)在只要將AF也關聯(lián)到三角形BEC中,我們發(fā)現(xiàn),∠BAE=∠EAF,∠BAE=∠M(AB∥CD),那么三角形AMF就是個等腰三角形,AF=MF,因此AB=MC=MF+FC=AF+FC;
(3)本題的作法與(2)類似,延長DE、CF交于點G,不難得出△ABE∽△GCE,
可根據(jù)線段的比例關系和AB的值得到CG的值,然后就能得出FG的值,同(2)可得出△DFG是等腰三角形,那么DF=GF,這樣就求出DF的值了.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在△ABC中,點D在AC上,點E在CB的延長線上,且AD=BE,求證:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,D,E分別是△ABC的邊AB,AC上的點,請你添加一個條件,使△ABC與△AED相似,你添加的條件是       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

兩個相似三角形的相似比為2:3,它們的面積和為65,那么較大三角形的面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線l1//l2,AF:FB=2:3,BC:CD=2:1,則AE:EC是        .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知在等腰△ABC中,∠A=∠B=30°.
(1)尺規(guī)作圖:過點C作CD⊥AC交AB于點D;
過A,D,C三點作⊙O(只要求作出圖形,保留痕跡,不要求寫作法);
(2)求證:.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連結DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).

(1)當點P在線段DE上運動時,線段DP的長為______cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm²),求S與t的函數(shù)關系式.
(4)連結CD.當點N于點D重合時,有一點H從點M出發(fā),在線段MN上以2.5cm/s的速度沿M-N-M連續(xù)做往返運動,直至點P與點E重合時,點H停止往返運動;當點P在線段EB上運動時,點H始終在線段MN的中心處.直接寫出在點P的整個運動過程中,點H落在線段CD上時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,菱形ABCD中,CF⊥AD,垂足為E,交BD的延長線于F.求證:AO2=BO•OF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,Rt△ABAC中,AB⊥AC,AB=3,AC=4,P是BC邊上一點,作PE⊥AB于E,PD⊥AC于D,設BP=x,則PD+PE=(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案