【題目】能簡便計算的簡便計算.
(1)[ +(-)]×
(2) ÷8+12.5%×
(3)×3.5+5.5×80%+0.8
(4)(-)×4×9
科目:初中數學 來源: 題型:
【題目】探究活動一:
如圖1,正方形ABCD和正方形QMNP,∠M=∠B,M是正方形ABCD的對稱中心,MN交AB于F,QM交AD于E,線段ME與線段MF的數量關系是 .(不必證明,直接給出結論即可)
探究活動二:
如圖2,將上題中的“正方形”改為“矩形”,且AB=mBC,其他條件不變(矩形ABCD和矩形QMNP,∠M=∠B,M是矩形ABCD的對稱中心,MN交AB于F,QM交AD于E),探究并證明線段ME與線段MF的數量關系;
探究活動三:
根據前面的探索和圖3,平行四邊形ABCD和平行四邊形QMNP中,若AB=mBC,∠M=∠B,M是平行四邊形ABCD的對稱中心,MN交AB于F,QM交AD于E,請?zhí)骄坎⒆C明線段ME與線段MF的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知ΔABC和ΔDCE均是等邊三角形,點B,C,E在同一條直線上,AE與CD交于點G,AC與BD交于點F,連接FG,則下列結論: ①AE=BD;②AG =BF;③FG∥BE;④CF=CG.其中正確的結論為____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E,點F為AC延長線上的一點,連接DF.
(1)求∠CBE的度數;
(2)若∠F=25°,求證:BE∥DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲,乙兩組工作一天,商店各應付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結論)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠計劃一個月安裝新式兒童小機器人玩具480臺.由于熟練工不夠,工廠決定招聘一些新工人,新工人經過培訓后上崗.調研部門發(fā)現:1名熟練工和2名新工人每天可安裝16臺小機器人玩具;3名熟練工和4名新工人每天可安裝40臺小機器人玩具.
(1)每名熟練工和新工人每天分別可以安裝多少臺小機器人玩具?
(2)如果工廠招聘名新工人,使得招聘的新工人和抽調的熟練工剛好能完成一個月的安裝任務,那么工廠有哪幾種新工人的招聘方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某企業(yè)接到一批產品的生產任務,按要求必須在14天內完成.已知每件產品的出廠價為60元.工人甲第x天生產的產品數量為y件,y與x滿足如下關系:
(1)工人甲第幾天生產的產品數量為70件?
(2)設第x天生產的產品成本為P元/件,P與的函數圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數關系式,并求出第幾天時利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,點E、F分別在邊BC、CD上,且∠EAF=∠CFF=45°
(1) 將△ADF繞點A順時針旋轉90 °,得到△ABG(如圖1),求證:BE+DF=EF;
(2) 若直線EF與AB、AD的延長線分別交于點M、N(如圖2),求證:
(3) 將正方形改為長與寬不相等的矩形,其余條件不變(如圖3),直接寫出線段EF、BE、DF之間的數量關系.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com