(2013•宿遷)在等腰△ABC中,∠ACB=90°,且AC=1.過(guò)點(diǎn)C作直線l∥AB,P為直線l上一點(diǎn),且AP=AB.則點(diǎn)P到BC所在直線的距離是( 。
分析:如圖,延長(zhǎng)AC,做PD⊥BC交點(diǎn)為D,PE⊥AC,交點(diǎn)為E,可得四邊形CDPE是正方形,則CD=DP=PE=EC;等腰Rt△ABC中,∠C=90°,AC=1,所以,可求出AC=1,AB=
2
,又AB=AP;所以,在直角△AEP中,可運(yùn)用勾股定理求得DP的長(zhǎng)即為點(diǎn)P到BC的距離.
解答:解:①如圖,延長(zhǎng)AC,做PD⊥BC交點(diǎn)為D,PE⊥AC,交點(diǎn)為E,
∵CP∥AB,
∴∠PCD=∠CBA=45°,
∴四邊形CDPE是正方形,
則CD=DP=PE=EC,
∵在等腰直角△ABC中,AC=BC=1,AB=AP,
∴AB=
12+12
=
2

∴AP=
2

∴在直角△AEP中,(1+EC)2+EP2=AP2
∴(1+DP)2+DP2=(
2
2
解得,DP=
3
-1
2
;

②如圖,延長(zhǎng)BC,作PD⊥BC,交點(diǎn)為D,延長(zhǎng)CA,作PE⊥CA于點(diǎn)E,
同理可證,四邊形CDPE是正方形,
∴CD=DP=PE=EC,
同理可得,在直角△AEP中,(EC-1)2+EP2=AP2
∴(PD-1)2+PD2=(
2
2,
解得,PD=
3
+1
2
;
故選D.
點(diǎn)評(píng):本題考查了勾股定理的運(yùn)用,通過(guò)添加輔助線,可將問(wèn)題轉(zhuǎn)化到直角三角形中,利用勾股定理解答;考查了學(xué)生的空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宿遷)如圖,一個(gè)平行四邊形的活動(dòng)框架,對(duì)角線是兩根橡皮筋.若改變框架的形狀,則∠α也隨之變化,兩條對(duì)角線長(zhǎng)度也在發(fā)生改變.當(dāng)∠α為
90
90
度時(shí),兩條對(duì)角線長(zhǎng)度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宿遷)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,1),B(1,2),點(diǎn)P在x軸上運(yùn)動(dòng),當(dāng)點(diǎn)P到A、B兩點(diǎn)距離之差的絕對(duì)值最大時(shí),點(diǎn)P的坐標(biāo)是
(-1,0)
(-1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宿遷)在平面直角坐標(biāo)系xOy中,一次函數(shù)y=
1
3
x+2
與反比例函數(shù)y=
5
x
(x>0)
的圖象交點(diǎn)的橫坐標(biāo)為x0.若k<x0<k+1,則整數(shù)k的值是
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宿遷)如圖,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.點(diǎn)E從點(diǎn)B出發(fā)沿BC方向運(yùn)動(dòng),過(guò)點(diǎn)E作EF∥AD交邊AB于點(diǎn)F.將△BEF沿EF所在的直線折疊得到△GEF,直線FG、EG分別交AD于點(diǎn)M、N,當(dāng)EG過(guò)點(diǎn)D時(shí),點(diǎn)E即停止運(yùn)動(dòng).設(shè)BE=x,△GEF與梯形ABCD的重疊部分的面積為y.
(1)證明△AMF是等腰三角形;
(2)當(dāng)EG過(guò)點(diǎn)D時(shí)(如圖(3)),求x的值;
(3)將y表示成x的函數(shù),并求y的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案