【題目】在直角坐標(biāo)系xoy中,對于點P(x,y) Q(x, y′) .給出如下定義:若 ,則稱點Q 為點P 可控變點” . 例如:點(1,2)的可控變點為點(1,2),點(-1,3)的可控變點為點(-1,-3.

1)點(-6,-3)的可控變點坐標(biāo)為________

2)若點P在函數(shù)y=-x216的圖象上,其可控變點Q的縱坐標(biāo)y′7,求可控變點Q的橫坐標(biāo).

【答案】1)(-6,3;2)3或-.

【解析】

1)直接根據(jù)可控變點的定義直接得出答案;
2)分兩種情況:若x>0, y=y'=7;若x<0, y=-y'=-7.代入y=-x216中即可求出x的值.

1∵-6<0

點(-6,-3)的可控變點坐標(biāo)為(-6,3);

2)解:若x>0, y=y'=7,

∴y=-x2+16=7,

解得:x=±3.

∴x=3.

x<0, y=-y'=-7,

∴y=-x2+16=-7,

解得:x=.

∴x=-.

可控變點Q的橫坐標(biāo)就3-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)yx0,k是常數(shù))的圖象交于Aa,2),B4,b)兩點.

1)求反比例函數(shù)的表達(dá)式;

2)點C是第一象限內(nèi)一點,連接ACBC,使ACx軸,BCy軸,連接OA,OB.若點Py軸上,且OPA的面積與四邊形OACB的面積相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊AB=20,面積為320,BAD<90°,O與邊AB,AD都相切,AO=10,則O的半徑長等于(

A.5 B.6 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小蕓設(shè)計的過圓外一點作已知圓的切線的尺規(guī)作圖過程.

已知:⊙O及⊙O外一點P

求作:⊙O的一條切線,使這條切線經(jīng)過點P

作法:①連接OP,作OP的垂直平分線l,交OP于點A;

②以A為圓心,AO為半徑作圓,交⊙O于點M;

③作直線PM,則直線PM即為⊙O的切線.

根據(jù)小蕓設(shè)計的尺規(guī)作圖過程,

1)用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2bxc(a0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標(biāo)分別為-1,3.與y軸負(fù)半軸交于點C,在下面五個結(jié)論中:①2ab0;②abc0;③c=-3a;④只有當(dāng)a 時,ABD是等腰直角三角形;⑤使ACB為等腰三角形的a值可以有三個.其中正確的結(jié)論是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.

(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

(2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標(biāo);

(3)當(dāng)點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司快遞員甲勻速騎車前往某小區(qū)送物件,出發(fā)幾分鐘后,快遞員乙發(fā)現(xiàn)甲的手機(jī)落在公司,無法聯(lián)系,于是乙勻速騎車去追趕甲.乙剛出發(fā)2分鐘時,甲也發(fā)現(xiàn)自己手機(jī)落在公司,立刻按原路原速騎車回公司,2分鐘后甲遇到乙,乙把手機(jī)給甲后立即原路原速返回公司,甲繼續(xù)原路原速趕往某小區(qū)送物件,甲乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示(乙給甲手機(jī)的時間忽略不計).則乙回到公司時,甲距公司的路程是______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=1的拋物線y=x2﹣bx+cx軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于C點,且+=﹣

(1)求拋物線的解析式;

(2)拋物線頂點為D,直線BDy軸于E點;

①設(shè)點P為線段BD上一點(點P不與B、D兩點重合),過點Px軸的垂線與拋物線交于點F,求BDF面積的最大值;

②在線段BD上是否存在點Q,使得∠BDC=QCE?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙O,且ABAC,直徑ADBC于點EFOE上的一點,使CFBD

1)求證:BECE;

2)若BC8AD10,求四邊形BFCD的面積.

查看答案和解析>>

同步練習(xí)冊答案