【題目】如圖,點O是線段AB和線段CD的中點.

(1)求證:△AOD≌△BOC;
(2)求證:AD∥BC.

【答案】
(1)

證明:∵點O是線段AB和線段CD的中點,

∴AO=BO,CO=DO.

在△AOD和△BOC中,有

∴△AOD≌△BOC(SAS)


(2)

證明:∵△AOD≌△BOC,

∴∠A=∠B,

∴AD∥BC


【解析】(1)由點O是線段AB和線段CD的中點可得出AO=BO,CO=DO,結(jié)合對頂角相等,即可利用全等三角形的判定定理(SAS)證出△AOD≌△BOC;(2)結(jié)合全等三角形的性質(zhì)可得出∠A=∠B,依據(jù)“內(nèi)錯角相等,兩直線平行”即可證出結(jié)論.本題考查了全等三角形的判定與性質(zhì)以及平行線的判定定理,解題的關(guān)鍵是:(1)利用SAS證出△AOD≌△BOC;(2)找出∠A=∠B.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)全等三角形的判定定理證出兩三角形全等,結(jié)合全等三角形的性質(zhì)找出相等的角,再依據(jù)平行線的判定定理證出兩直線平行即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為米(結(jié)果精確到0.1米,參考數(shù)據(jù): =1.41, =1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級有24個班,共1000名學(xué)生,他們參加了一次數(shù)學(xué)測試,學(xué)校統(tǒng)計了所有學(xué)生的成績,得到下列統(tǒng)計圖.

(1)求該校九年級學(xué)生本次數(shù)學(xué)測試成績的平均數(shù);
(2)下列關(guān)于本次數(shù)學(xué)測試說法正確的是(  )
A.九年級學(xué)生成績的眾數(shù)與平均數(shù)相等
B.九年級學(xué)生成績的中位數(shù)與平均數(shù)相等
C.隨機抽取一個班,該班學(xué)生成績的平均數(shù)等于九年級學(xué)生成績的平均數(shù)
D.隨機抽取300名學(xué)生,可以用他們成績的平均數(shù)估計九年級學(xué)生成績的平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.

(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質(zhì)量進行調(diào)查,從全年365天中隨機抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表.請根據(jù)圖表中提供的信息解答下列問題:

AQI指數(shù)

質(zhì)量等級

天數(shù)(天)

0﹣50

優(yōu)

m

51﹣100

44

101﹣150

輕度污染

n

151﹣200

中度污染

4

201﹣300

重度污染

2

300以上

嚴(yán)重污染

2


(1)統(tǒng)計表中m= , n= . 扇形統(tǒng)計圖中,空氣質(zhì)量等級為“良”的天數(shù)占%;
(2)補全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共多少天?
(3)據(jù)調(diào)查,嚴(yán)重污染的2天發(fā)生在春節(jié)期間,燃放煙花爆竹成為空氣污染的一個重要原因,據(jù)此,請你提出一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點B(1,4)和點E(3,0)兩點.

(1)求拋物線的解析式;
(2)若點D在線段OC上,且BD⊥DE,BD=DE,求D點的坐標(biāo);
(3)在條件(2)下,在拋物線的對稱軸上找一點M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點M的坐標(biāo);
(4)在條件(2)下,從B點到E點這段拋物線的圖象上,是否存在一個點P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2﹣4a(a>0)與x軸相交于A,B兩點(點A在點B的左側(cè)),點P是拋物線上一點,且PB=AB,∠PBA=120°,如圖所示.

(1)求拋物線的解析式.
(2)設(shè)點M(m,n)為拋物線上的一個動點,且在曲線PA上移動.
①當(dāng)點M在曲線PB之間(含端點)移動時,是否存在點M使△APM的面積為 ?若存在,求點M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點M在曲線BA之間(含端點)移動時,求|m|+|n|的最大值及取得最大值時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過B、C兩點.

(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案