【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當(dāng)AM∥BN時:

(1)點點發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.

【答案】
(1)

解:原命題不成立,新結(jié)論為:∠APB=90°,AF+BE=2AB(或AF=BE=AB),

理由:∵AM∥BN,

∴∠MAB+∠NBA=180°,

∵AE,BF分別平分∠MAB,NBA,

∴∠EAB= ∠MAB,∠FBA= ∠NBA,

∴∠EAB+∠FBA= (∠MAB+∠NBA)=90°,

∴∠APB=90°,

∵AE平分∠MAB,

∴∠MAE=∠BAE,

∵AM∥BN,

∴∠MAE=∠BAE,

∴∠BAE=∠BEA,

∴AB=BE,

同理:AF=AB,

∴AF=+BE=2AB(或AF=BE=AB);


(2)

解:如圖1,

過點F作FG⊥AB于G,

∵AF=BE,AF∥BE,

∴四邊形ABEF是平行四邊形,

∵AF+BE=16,

∴AB=AF=BE=8,

∵32 =8×FG,

∴FG=4

在Rt△FAG中,AF=8,

∴∠FAG=60°,

當(dāng)點G在線段AB上時,∠FAB=60°,

當(dāng)點G在線段BA延長線時,∠FAB=120°,

①如圖2,

當(dāng)∠FAB=60°時,∠PAB=30°,

∴PB=4,PA=4 ,

∵BQ=5,∠BPA=90°,

∴PQ=3,

∴AQ=4 ﹣3或AQ=4 +3.

②如圖3,

當(dāng)∠FAB=120°時,∠PAB=60°,∠FBG=30°,

∴PB=4

∵PB=4 >5,

∴線段AE上不存在符合條件的點Q,

∴當(dāng)∠FAB=60°時,AQ=4 ﹣3或4 +3.


【解析】(1)由角平分線和平行線整體求出∠MAB+∠NBA,從而得到∠APB=90°,最后用等邊對等角,即可.(2)先根據(jù)條件求出AF,F(xiàn)G,求出∠FAG=60°,最后分兩種情況討論計算.此題是四邊形綜合題,主要考查了平行線的性質(zhì),角平分線的性質(zhì),直角三角形的性質(zhì),勾股定理,解本題的關(guān)鍵是用勾股定理計算線段.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),菱形ABCD對角線AC、BD的交點O是四邊形EFGH對角線FH的中點,四個頂點A、B、C、D分別在四邊形EFGH的邊EF、FG、GH、HE上.

(1)求證:四邊形EFGH是平行四邊形;
(2)如圖(2)若四邊形EFGH是矩形,當(dāng)AC與FH重合時,已知 =2,且菱形ABCD的面積是20,求矩形EFGH的長與寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初二()班的全體同學(xué)在體測當(dāng)天沿著同一條路勻速從名校聯(lián)中班級教室出發(fā)到重慶一中本部操場參加體育測試,行進到本部綜合樓時班主任老師發(fā)現(xiàn)未帶相關(guān)體測器材,立即派小趙同學(xué)原路勻速跑回本班教室取器材(取器材時間為分鐘),然后馬上又以原速的去追趕班級隊伍當(dāng)途中再次經(jīng)過綜合樓時,小趙發(fā)現(xiàn)班級隊伍在自己前面不遠處,于是他又以之前的速度追趕班級隊伍,結(jié)果仍然比班級隊伍晚分鐘到達本部操場如圖所示,設(shè)小趙與本部操場之間距離為),小趙所用時間為),則當(dāng)小趙途中再次經(jīng)過綜合樓時,班級隊伍(隊伍長度忽略不計)離本部操場的距離是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市2016年四月每日的最低氣溫(℃)的統(tǒng)計圖,則在四月份每日的最低氣溫這組數(shù)據(jù)中,中位數(shù)和眾數(shù)分別是(

A.14℃,14℃
B.15℃,15℃
C.14℃,15℃
D.15℃,14℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車廠去年每個季度汽車銷售數(shù)量(輛)占當(dāng)季汽車產(chǎn)量(輛)百分比的統(tǒng)計圖如圖所示.根據(jù)統(tǒng)計圖回答下列問題:

(1)若第一季度的汽車銷售量為2100輛,求該季的汽車產(chǎn)量;
(2)圓圓同學(xué)說:“因為第二,第三這兩個季度汽車銷售數(shù)量占當(dāng)季汽車產(chǎn)量是從75%降到50%,所以第二季度的汽車產(chǎn)量一定高于第三季度的汽車產(chǎn)量”,你覺得圓圓說的對嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架云梯AB的長25 m,斜靠在一面墻上,梯子靠墻的一端A距地面距離AC24 m.

(1)這個梯子底端B離墻的距離BC有多少米?

(2)如果梯子的頂端下滑了4 m,那么梯子的底部在水平方向也滑動了4 m嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定兩數(shù)a、b之間的一種運算,記作(a,b):如果,那么(a,b)=c.

例如:因為,所以(2,8)=3.

(1)根據(jù)上述規(guī)定,填空:

(5,125)= ,(-2,4)= ,(-2,-8)= ;

(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:,他給出了如下的證明:

設(shè),則,即

,即,

請你嘗試運用上述這種方法說明下面這個等式成立的理由.

(4,5)+(4,6)=(4,30)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,則梯形ABCD的周長為(
A.12
B.15
C.12
D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題情境】

課外興趣小組活動時,老師提出了如下問題:

如圖①,ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點E,使DEAD,連接BE.請根據(jù)小明的方法思考:

(1)由已知和作圖能得到ADC≌△EDB,依據(jù)是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三邊關(guān)系可求得AD的取值范圍是

解后反思:題目中出現(xiàn)中點”、“中線等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形之中.

【初步運用】

如圖②ADABC的中線,BEACE,交ADF,且AEEF.若EF=3,EC=2,求線段BF的長.

【靈活運用】

如圖③,在ABC中, A=90°,DBC中點, DEDF,DEAB于點EDFAC于點F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案