【題目】兩人要去某風(fēng)景區(qū)游玩,每天某一時(shí)段開往該風(fēng)景區(qū)有三輛汽車(票價(jià)相同),但是他們不知道這些車的舒適程度,也不知道汽車開過來的順序.兩人采用了不同的乘車方案:甲無論如何總是上開來的第一輛車.而乙則是先觀察后上車,當(dāng)?shù)谝惠v車開來時(shí),他不上車,而是仔細(xì)觀察車的舒適狀況.如果第二輛車的狀況比第一輛好,他就上第二輛車;如果第二輛不比第一輛好,他就上第三輛車.如果把這三輛車的舒適程度分為上、中、下三等,請嘗試解決下面的問題:請用樹狀圖或列表法分析,甲、乙兩人采用的方案,哪一種方案使自己乘坐上等車的可能性大.

【答案】乙采取的方案乘坐上等車的可能性大

【解析】

利用列舉法展示所有6種等可能的結(jié)果;然后利用列表法展示甲乙乘車的所有結(jié)果,然后計(jì)算他們乘坐上等車的概率,再比較概率的大。

解:三輛車開來的先后順序有6種可能:

(上、中、下)、(上、下、中)、(中、上、下)、(中、下、上)、(下、中、上)、(下、上、中);

由于不知道任何信息,所以只能假定6種順序出現(xiàn)的可能性相同.我們來研究在各種可能性的順序之下,甲、乙二人分別會(huì)上哪一輛汽車:

順序

上、中、下

上、下、中

中、上、下

中、下、上

下、上、中

下、中、上

于是不難得出,甲乘上等車的概率是;而乙乘上等車的概率是

∴乙采取的方案乘坐上等車的可能性大

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,線段OB的長是方程x2﹣2x﹣8=0的解,tan∠BAO=

(1)求點(diǎn)A的坐標(biāo);

(2)點(diǎn)E在y軸負(fù)半軸上,直線ECAB,交線段AB于點(diǎn)C,交x軸于點(diǎn)D,SDOE=16.若反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,求k的值;

(3)在(2)條件下,點(diǎn)M是DO中點(diǎn),點(diǎn)N,P,Q在直線BD或y軸上,是否存在點(diǎn)P,使四邊形MNPQ是矩形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊OA在x軸上,AC與OB交于點(diǎn)D (8,4),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D.若將菱形OABC向左平移n個(gè)單位,使點(diǎn)C落在該反比例函數(shù)圖象上,則n的值為 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+bx+cx軸交于點(diǎn)A(4,﹣5)

1)如圖,過點(diǎn)A分別向x軸、y軸作垂線,垂足分別為BC,得到矩形ABOC,且拋物線經(jīng)過點(diǎn)C

①求拋物線的解析式.

②將拋物線沿直線xm2m0)翻折,分別交線段OB、ACDE兩點(diǎn).若直線DE剛好平分矩形ABOC的面積,求m的值.

2)將拋物線旋轉(zhuǎn)180°,使點(diǎn)A的對應(yīng)點(diǎn)為A1(m2,n4),其中m≤2.若旋轉(zhuǎn)后的拋物線仍然經(jīng)過點(diǎn)A,求旋轉(zhuǎn)后的拋物線頂點(diǎn)所能達(dá)到最低點(diǎn)時(shí)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱為整圓.如圖,直線l:y=kx+4x軸、y軸分別交于A、B,OAB=30°,點(diǎn)Px軸上,⊙Pl相切,當(dāng)P在線段OA上運(yùn)動(dòng)時(shí),使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形,點(diǎn)上的一點(diǎn),連結(jié),,平分,交于點(diǎn),且點(diǎn)的中點(diǎn),連結(jié),已知,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形的直角頂點(diǎn)軸的正半軸上,,將繞頂點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)落在雙曲線的圖象上,則________,該雙曲線的函數(shù)解析式為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,AC是⊙O的切線,∠ABC=52°,BC交⊙O于點(diǎn)D,EAB上一點(diǎn),延長DE交⊙O于點(diǎn)F

(Ⅰ)如圖①,連接BF,求∠C和∠DFB的大;

(Ⅱ)如圖②,當(dāng)DB=DE時(shí),求∠OFD的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,矩形的頂點(diǎn)1,0),0,2),點(diǎn)在第一象限,軸,若函數(shù)的圖象經(jīng)過矩形的對角線的交點(diǎn),則的值為(

A.4B.5C.8D.10

查看答案和解析>>

同步練習(xí)冊答案