【題目】拋物線y1x2+bx+c與直線y2=﹣2x+m相交于A(﹣2,n)、B2,﹣3)兩點(diǎn).

1)求這條拋物線的解析式;

2)若點(diǎn)D為拋物線的頂點(diǎn),求三角形ABD的面積.

【答案】1y1x22x3;(26

【解析】

1)把B的坐標(biāo)代入直線y2=﹣2x+m求得m的值,然后代入A(﹣2,n)求得n的值,最后根據(jù)待定系數(shù)法即可求得拋物線的解析式;

2)求得頂點(diǎn)D的坐標(biāo),再求得對稱軸與直線的交點(diǎn)C,然后根據(jù)SABDSACD+SBCD求得即可.

解:(1)∵直線y2=﹣2x+m經(jīng)過點(diǎn)B2,﹣3),

∴﹣3=﹣2×2+m

m1

∵直線y2=﹣2x+1經(jīng)過點(diǎn)A(﹣2,n),

n4+15;

∵拋物線y1x2+bx+c過點(diǎn)A和點(diǎn)B,

∴這條拋物線的解析式為y1x22x3

2)如圖,設(shè)對稱軸與直線y2=﹣2x+1的交點(diǎn)為C,

y1x22x3=(x124,

∴頂點(diǎn)D為(1,﹣4),對稱軸為直線x1,

x1代入y2=﹣2x+1得,y=﹣1,

C點(diǎn)的坐標(biāo)為(1,1),

CD=﹣1﹣(﹣4)=3,

SABDSACD+SBCD×3×2+2)=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A12,0),B0,9)分別是平面直解坐標(biāo)系xOy坐標(biāo)軸上的點(diǎn),經(jīng)過點(diǎn)O且與AB相切的動(dòng)圓與x軸、y軸分別相交與點(diǎn)PQ,則線段PQ長度的最小值是( 。

A.B.10C.7.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2m1x+m20有實(shí)數(shù)根.

1)求m的取值范圍;

2)若兩根為x1、x2x12+x227,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】吳京同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對一個(gè)新函數(shù)y的圖象和性質(zhì)進(jìn)行了如下探究,請幫他把探究過程補(bǔ)充完整

1)該函數(shù)的自變量x的取值范圍是   

2)列表:

x

2

1

0

1

2

3

4

5

6

y

m

1

5

n

1

表中m   ,n   

3)描點(diǎn)、連線

在下面的格點(diǎn)圖中,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系xOy中,描出上表中各對對值為坐標(biāo)的點(diǎn)(其中x為橫坐標(biāo),y為縱坐標(biāo)),并根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象:

4)觀察所畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):

   ;

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點(diǎn)OOFBCF,若BD=8cm,AE=2cm,

(1)求⊙O的半徑;

(2)O到弦BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)C′),連接CC′,若∠CC′B′=33°,則∠B的大小是(  )

A. 33° B. 45° C. 57° D. 78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是正方形的邊延長線一點(diǎn),連接,作的延長線于,連接,當(dāng)時(shí),作,連接,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面

的最大距離是5m

1經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案如下圖

你選擇的方案是_____填方案一,方案二,或方案三),B點(diǎn)坐標(biāo)是______求出你所選方案中的拋物線的表達(dá)式;

2因?yàn)樯嫌嗡畮煨购?/span>水面寬度變?yōu)?/span>6m,求水面上漲的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,求海警船到大事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)

查看答案和解析>>

同步練習(xí)冊答案