如圖,在直角坐標系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標;
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.
(1)∵OA⊥OB,OA:OB=4:3,⊙D的半徑為2
∴⊙C過原點,OC=4,AB=8
A點坐標為(
32
5
,0)B點坐標為(0,
24
5

∴⊙C的圓心C的坐標為(
16
5
12
5
)(3分)

(2)由EF是⊙D的切線,
∴OC⊥EF
∵CO=CA=CB
∴∠COA=∠CAO,∠COB=∠CBO
∴Rt△AOBRt△OCERt△FCO
OE
AB
=
OC
OA
,
OF
AB
=
OC
OB

∴OE=5,OF=
20
3

∴E點坐標為(5,0),F(xiàn)點坐標(0,
20
3

∴切線EF的解析式為y=-
4
3
x+
20
3
;(7分)

(3)①當(dāng)拋物線開口向下時,由題意,得
拋物線頂點坐標為(
16
5
12
5
+4),
可得:-
b
2a
=
16
5
,
4ac-b2
4a
=
32
5
,c=
24
5

∴a=-
5
32
,b=1,c=
24
5
,
∴y=-
5
32
x2+x+
24
5
;(10分)
②當(dāng)拋物線開口向上時,
頂點坐標為(
16
5
,
12
5
-4),
可得:-
b
2a
=
16
5
,
4ac-b2
4a
=-
8
5
,c=
24
5
,
∴y=
5
8
x2-4x+
24
5
;
綜上所述,拋物線解析式為:
y=-
5
32
x2+x+
24
5
或y=
5
8
x2-4x+
24
5
.(12分)
注:其他解法參照以上評分標準評分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(1,
21
4
),(2,
11
2
)兩點,與x軸的兩個交點的右邊一個交點為點A,與y軸交于點B.
(1)求此二次函數(shù)的解析式并畫出這個二次函數(shù)的圖象;
(2)求線段AB的中垂線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=x與拋物線y=
1
2
x2
交于A、B兩點.
(1)求交點A、B的坐標;
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=
1
2
x2
的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點,使得每個點與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形OABC的兩邊在坐標軸上,且A(0,-2),AB=4,連接AC,拋物線y=x2+bx+c經(jīng)過A,B兩點.點P由點A出發(fā)以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發(fā)以每秒7個單位的速度沿AO,OC,CB邊向點B移動,當(dāng)其中一個點到達終點時另一個點也停止移動.
(1)求拋物線的解析式;
(2)當(dāng)P運動到OC上時,設(shè)點P的移動時間為t秒,當(dāng)PQ⊥AC時,求t的值;
(3)當(dāng)PQAC時,對于拋物線對稱軸上一點H,∠HOQ>∠POQ,求點H的縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線:y=
1
2
x2+bx+c
與x軸交于A、B(A在B左側(cè)),頂點為C(1,-2),
(1)求此拋物線的關(guān)系式;并直接寫出點A、B的坐標.
(2)求過A、B、C三點的圓的半徑.
(3)在拋物線上找點P,在y軸上找點E,使以A、B、P、E為頂點的四邊形是平行四邊形,求點P、E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,現(xiàn)將一塊腰長為
5
的等腰直角三角板ABC放在第三象限,斜靠在兩坐標軸上,且點A(0,-2),直角頂點C在x軸的負半軸上(如圖所示),拋物線y=ax2+ax+2經(jīng)過點B.
(1)點C的坐標為______,點B的坐標為______;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長線上,取B關(guān)于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關(guān)于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為______.

(2)實踐運用
如(3)圖,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數(shù)為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.

(3)拓展遷移
如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標與△ACM周長最小值.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n交x軸于A、B兩點,直線y=kx+b經(jīng)過點A,與這條拋物線的對稱軸交于點M(1,2),且點M與拋物線的頂點N關(guān)于x軸對稱.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)根據(jù)圖象,寫出函數(shù)值y為負數(shù)時,自變量x的取值范圍;
(3)設(shè)題中的拋物線與直線的另一交點為C,已知P(x,y)為直線AC上一點,過點P作PQ⊥x軸,交拋物線于點Q.當(dāng)-1≤x≤1.5時,求線段PQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校課外活動小組準備利用學(xué)校的一面墻,用長為30米的籬笆圍成一個矩形生物苗圃園.
(1)若墻長為18米(如圖所示),當(dāng)垂直于墻的一邊的長為多少米時,這個苗圃園的面積等于88平方米?
(2)當(dāng)垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.

查看答案和解析>>

同步練習(xí)冊答案