如圖,A、B是⊙O上的兩點(diǎn),∠AOB=120°,C是的中點(diǎn),求證四邊形OACB是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是( )
A. (-1,3) B. (1,3) C. (1,-3) D. (-1,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將三角板的直角頂點(diǎn)放在⊙O的圓心上,兩條直角邊分別交⊙O于A、B兩點(diǎn),點(diǎn)P在優(yōu)弧AB上,且與點(diǎn)A、B不重合,連結(jié)PA、PB.則∠APB的大小為 °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,拋物線y=nx2-11nx+24n (n<0) 與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),拋物線上另有一點(diǎn)A在第一象限內(nèi),且∠BAC=90°.
(1)填空:點(diǎn)B的坐標(biāo)為(_ ),點(diǎn)C的坐標(biāo)為(_ );
(2)連接OA,若△OAC為等腰三角形.
①求此時(shí)拋物線的解析式;
②如圖2,將△OAC沿x軸翻折后得△ODC,點(diǎn)M為①中所求的拋物線上點(diǎn)A與點(diǎn)C兩點(diǎn)之間一動(dòng)點(diǎn),且點(diǎn)M的橫坐標(biāo)為m,過動(dòng)點(diǎn)M作垂直于x軸的直線l與CD交于點(diǎn)N,試探究:當(dāng)m為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
成都市為了解決街道路面問題,需在中心城區(qū)重新鋪設(shè)一條長3000米的路面,實(shí)施施工時(shí)“……”,設(shè)實(shí)際每天鋪設(shè)路面米,則可得方程,根據(jù)此情景,題中用“……” 表示的缺失的條件應(yīng)補(bǔ)為( )
A. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期15天才完成;
B. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期15天才完成;
C. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前15天才完成;
D. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前15天才完成;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于二次函數(shù),以下結(jié)論:①不論取何值,拋物線總經(jīng)過點(diǎn)(1,0);②拋物線與軸一定有兩個(gè)交點(diǎn);③若6,拋物線交軸于A、B兩點(diǎn),則AB;④拋物線的頂點(diǎn)在圖像上.上述說法錯(cuò)誤的序號是____ _.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com