【題目】如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求點C的坐標;
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.
(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內(nèi)當y1<y2時x的取值范圍.
【答案】(1)C(﹣3,2);(2)y1=, y2=﹣x+3; (3)3<x<6.
【解析】分析:
(1)過點C作CN⊥x軸于點N,由已知條件證Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3結(jié)合點C在第二象限即可得到點C的坐標;
(2)設(shè)△ABC向右平移了c個單位,則結(jié)合(1)可得點C′,B′的坐標分別為(﹣3+c,2)、(c,1),再設(shè)反比例函數(shù)的解析式為y1=,將點C′,B′的坐標代入所設(shè)解析式即可求得c的值,由此即可得到點C′,B′的坐標,這樣用待定系數(shù)法即可求得兩個函數(shù)的解析式了;
(3)結(jié)合(2)中所得點C′,B′的坐標和圖象即可得到本題所求答案.
詳解:
(1)作CN⊥x軸于點N,
∴∠CAN=∠CAB=∠AOB=90°,
∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,
∴∠CAN=∠OAB,
∵A(﹣2,0)B(0,1),
∴OB=1,AO=2,
在Rt△CAN和Rt△AOB,
∵ ,
∴Rt△CAN≌Rt△AOB(AAS),
∴AN=BO=1,CN=AO=2,NO=NA+AO=3,
又∵點C在第二象限,
∴C(﹣3,2);
(2)設(shè)△ABC沿x軸的正方向平移c個單位,則C′(﹣3+c,2),則B′(c,1),
設(shè)這個反比例函數(shù)的解析式為:y1=,
又點C′和B′在該比例函數(shù)圖象上,把點C′和B′的坐標分別代入y1=,得﹣6+2c=c,
解得c=6,即反比例函數(shù)解析式為y1=,
此時C′(3,2),B′(6,1),設(shè)直線B′C′的解析式y2=mx+n,
∵ ,
∴ ,
∴直線C′B′的解析式為y2=﹣x+3;
(3)由圖象可知反比例函數(shù)y1和此時的直線B′C′的交點為C′(3,2),B′(6,1),
∴若y1<y2時,則3<x<6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.
△ACB和△DCE的頂點都在格點上,ED的延長線交AB于點F.
(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知PA=PB=PC=2,∠BPC=120°,PA∥BC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長為( 。
A. B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊上的高,點E、F是AD的三等分點,若AD=6cm,CD=3cm,則圖中陰影部分的面積是____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當x=0時,y2﹣y1=4;
④2AB=3AC;
其中正確結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)當?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為 m.
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點C成中心對稱的△A1B1C1,并直接寫出A1、B1、C1各點的坐標;
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com