【題目】“九宮圖”傳說(shuō)是遠(yuǎn)古時(shí)代洛河中的一個(gè)神龜背上的圖案,故又稱“龜背圖”,中國(guó)古代數(shù)學(xué)史上經(jīng)常研究這一神話。

⑴現(xiàn)有1,2,3,4,5,6,7,8,9共九個(gè)數(shù)字,請(qǐng)將它們分別填入圖1的九個(gè)方格中,使得每行的三個(gè)數(shù)、每列的三個(gè)數(shù)、斜對(duì)角的三個(gè)數(shù)之和都等于15.

⑵通過(guò)研究問(wèn)題⑴,利用你發(fā)現(xiàn)的規(guī)律,將3,5,-7,1,7,-3,9,-5,-1

這九個(gè)數(shù)字分別填入圖2的九個(gè)方格中,使得橫、豎、斜對(duì)角的所有三個(gè)數(shù)的和都相等.

【答案】詳見(jiàn)解析.

【解析】

115÷3=5,

最中間的數(shù)是5,其它空格填寫(xiě)如圖1;

2)先求出所有數(shù)的和是9,根據(jù)題意,每個(gè)數(shù)都用了3次,用9÷3=3得到橫、豎、斜對(duì)角的所有三個(gè)數(shù)的和等于3,然后根據(jù)3試探填入數(shù)據(jù)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年4月,國(guó)民體質(zhì)監(jiān)測(cè)中心等機(jī)構(gòu)開(kāi)展了青少年形體測(cè)評(píng),專家組隨機(jī)抽查了某市若干名初中生坐姿、站姿、走姿的好壞情況. 我們對(duì)專家的測(cè)評(píng)數(shù)據(jù)作了適當(dāng)處理(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),我們以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中所給信息解答些列問(wèn)題:

1)請(qǐng)將兩幅圖補(bǔ)充完整;

2)在這次形體測(cè)評(píng)中,一共抽查了______名學(xué)生,如果全市有20萬(wàn)名初中生,那么全市初中生中,三姿良好的學(xué)生約有______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公交公司有AB型兩種客車,它們的載客量和租金如下表:

A

B

載客量(人/輛)

45

30

租金(元/輛)

400

280

某中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地校參加社會(huì)實(shí)踐活動(dòng).設(shè)租用A型客車x輛,根據(jù)要求回答下列問(wèn)題:

1)用含x的式子填寫(xiě)下表:

車輛數(shù)(輛)

載客量

租金(元)

A

x

45x

400x

B

5-x

2)若要保證租車費(fèi)用不超過(guò)1900元,求x的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)ECD上,將BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)GAF上,將ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGHAG+DF=FG.

其中正確的是__.(把所有正確結(jié)論的序號(hào)都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把棱長(zhǎng)為1cm的若干個(gè)小正方體擺放如圖所示的幾何體,然后在露出的表面上涂上顏色不含底面

該幾何體中有多少小正方體?

畫(huà)出主視圖.

求出涂上顏色部分的總面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CBDC(或它們的延長(zhǎng)線)于點(diǎn)M、N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖),易證BM+DN=MN

1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BMDN時(shí)(如圖),線段BM、DNMN之間有怎樣的數(shù)量關(guān)系?寫(xiě)出猜想,并加以證明;

2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖的位置時(shí),線段BM、DNMN之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1x2,y1y2.若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)PQ的“相關(guān)矩形”,下圖為點(diǎn)PQ的“相關(guān)矩形”的示意圖.

已知點(diǎn)A的坐標(biāo)為(1,0),

1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;

2)點(diǎn)C在直線x3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;

3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒(méi)有公共點(diǎn)時(shí),求出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點(diǎn)A、B、C在同一條直線上,小紅在D處觀測(cè)旗桿頂部A的仰角為47°,觀測(cè)旗桿底部B的仰角為42°已知點(diǎn)D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).(參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90)

查看答案和解析>>

同步練習(xí)冊(cè)答案