【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是(  )

A. 2 B. C. D. 2

【答案】C

【解析】試題分析:由OP平分∠AOB,∠AOB=60°CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.

解:∵OP平分∠AOB,∠AOB=60°,

∴∠AOP=∠COP=30°,

∵CP∥OA

∴∠AOP=∠CPO,

∴∠COP=∠CPO,

∴OC=CP=2

∵∠PCE=∠AOB=60°,PE⊥OB,

∴∠CPE=30°

∴CE=CP=1,

∴PE==

∴OP=2PE=2,

∵PD⊥OA,點(diǎn)MOP的中點(diǎn),

∴DM=OP=

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為(

A.100米 B.99米 C.98米 D.74米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.

(1如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;

(2如圖2,若點(diǎn)O正方形的中心(即兩對(duì)角線的交點(diǎn),則(1中的結(jié)論是否仍然成立?請(qǐng)說明理由;

(3如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界,當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過程中可形成什么圖形?

(4如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說理

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△A1B1C1是邊長為1的等邊三角形,A2為等邊△A1B1C1的中心,連接A2B1并延長到點(diǎn)B2 , 使A2B1=B1B2 , 以A2B2為邊作等邊△A2B2C2 , A3為等邊
△A2B2C2的中心,連接A3B2并延長到點(diǎn)B3 , 使A3B2=B2B3 , 以A3B3為邊作等邊△A3B3C3 , 依次作下去得到等邊△AnBnCn , 則等邊△A5B5C5的邊長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計(jì)劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個(gè)類別的拓展性課程,要求每一位學(xué)生都自主選擇一個(gè)類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖(部分信息未給出):

根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:

)求本次被調(diào)查的學(xué)生人數(shù).

)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

)若該校共有名學(xué)生,請(qǐng)估計(jì)全校選擇體育類的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)y= 交于C、D兩點(diǎn).已知點(diǎn)C坐標(biāo)為(﹣4,﹣1),點(diǎn)D的橫坐標(biāo)為2.

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點(diǎn)P為坐標(biāo)軸上一點(diǎn),且SACP=2SABO , 請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖△ABC中,AB為⊙O的直徑,BC切⊙O于點(diǎn)B,AC交⊙O與點(diǎn)F,點(diǎn)E在AC上,且∠EBC= ∠BAC,BE交⊙O于點(diǎn)D.

(1)求證:AB=AE;
(2)若AB=10,cos∠EBC= ,求線段BE和BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=BC,PABC內(nèi)一點(diǎn),且PA=3,PB=1,PC= CD=2,CDCP,求∠BPC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),求證:①BD⊥CF.②CF=BC﹣CD.
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),其它條件不變,請(qǐng)直接寫出CF、BC、CD三條線段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長線上時(shí),且點(diǎn)A、F分別在直線BC的兩側(cè),其它條件不變:①請(qǐng)直接寫出CF、BC、CD三條線段之間的關(guān)系.②若連接正方形對(duì)角線AE、DF,交點(diǎn)為O,連接OC,探究△AOC的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案