【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進40海里到達(dá)B點,此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD是( )

A.20海里
B.40海里
C.20 海里
D.40 海里

【答案】C
【解析】解:根據(jù)題意可知∠CAD=30°,∠CBD=60°,
∵∠CBD=∠CAD+∠ACB,
∴∠CAD=30°=∠ACB,
∴AB=BC=40海里,
在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC= ,
∴sin60°= ,
∴CD=40×sin60°=40× =20 (海里).
故選:C.
【考點精析】利用關(guān)于方向角問題對題目進行判斷即可得到答案,需要熟知指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20,射線OB的方向是北偏西40,ODOB的反向延長線,OC是∠AOD的平分線。

1)求∠BOC的度數(shù);

2)求出射線OC的方向。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OPAOB的平分線,PCOA,PDOB,垂足分別是C,DEOP上一點,則下列結(jié)論錯誤的是(  )

A. CEDEB. CPODEPC. CEODEOD. OCOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC平分∠DAB,ABD=52°,ABC=116°,ACB=α°,則∠BDC的度數(shù)為( 。

A. α B. C. 90﹣α D. 90﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長為 1,CDAB 于點 D,E 為射線 CD 上一點,以BE為邊在 BE 左側(cè)作等邊△BEF,則DF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D是△ABC外一點,連接AD、BD、CD,若∠CDB=90°,BD=3,AD= ,則AC長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,直線y=﹣x﹣3與x軸交于點A,與y軸交于點C,拋物線y=x2+bx+c經(jīng)過A、C兩點,與x軸交于另一點B

(1)求拋物線的解析式;
(2)點D是第二象限拋物線上的一個動點,連接AD、BD、CD,當(dāng)S△ACD= S四邊形ACBD時,求D點坐標(biāo);
(3)在(2)的條件下,連接BC,過點D作DE⊥BC,交CB的延長線于點E,點P是第三象限拋物線上的一個動點,點P關(guān)于點B的對稱點為點Q,連接QE,延長QE與拋物線在A、D之間的部分交于一點F,當(dāng)∠DEF+∠BPC=∠DBE時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生的課外活動,某校決定購買100個籃球和副羽毛球拍.經(jīng)調(diào)查發(fā)現(xiàn):甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費用正好相等.經(jīng)洽談,甲商店的優(yōu)惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數(shù)超過80個,則購買羽毛球拍可打八折.

1)求每個籃球和每副羽毛球拍的價格分別是多少?

2)請用含的代數(shù)式分別表示出到甲商店和乙商店購買所花的費用;

3)請你決策:在哪家商店購買劃算?(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案