【題目】如圖所示表示王勇同學(xué)騎自行車離家的距離與時(shí)間之間的關(guān)系,王勇9點(diǎn)離開家,15點(diǎn)回家,請(qǐng)結(jié)合圖象,回答下列問題:

到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?

他一共休息了幾次?休息時(shí)間最長(zhǎng)的一次是多長(zhǎng)時(shí)間?

在哪些時(shí)間段內(nèi),他騎車的速度最快?最快速度是多少?

【答案】(1)30(2)1(3)15

【解析】

根據(jù)折線統(tǒng)計(jì)圖可知,王勇同學(xué)到達(dá)離家最遠(yuǎn)的地方距離他家是30千米;

統(tǒng)計(jì)圖中,折線持平的就是王勇同學(xué)休息的時(shí)間,由圖可見,王勇同學(xué)共休息了2次,可用進(jìn)行計(jì)算即可得到王勇同學(xué)每次休息的時(shí)間;

王勇同學(xué)從11:0012:00之間和13:0015:00之間,所騎車的速度最快,列式解答即可得到答案.

王勇同學(xué)到達(dá)離家最遠(yuǎn)的地方中午12時(shí),距離他家是30千米;

王勇同學(xué)共休息了2次,休息時(shí)間最長(zhǎng)的一次是小時(shí)的時(shí)間;

王勇同學(xué)從11001200之間和13001500之間,所騎車的速度最快,最快速度是15千米小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBC邊上的中線,點(diǎn)EAD的中點(diǎn),過點(diǎn)AAFBCBE的延長(zhǎng)線于F,連接CF.

(1)求證:AEF≌△DEB;

(2)若∠BAC=90°,試判斷四邊形ADCF的形狀,并證明你的結(jié)論;

(3)在(2)的情況下,點(diǎn)MAC線段上移動(dòng),請(qǐng)直接回答,當(dāng)點(diǎn)M移動(dòng)到什么位置時(shí),MB+MD有最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)

(1)請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;并寫出各點(diǎn)的坐標(biāo).
(2)在x軸上求作一點(diǎn)P,使△PAB的周小最小,請(qǐng)畫出△PAB,并直接寫出P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某施工工地安放了一個(gè)圓柱形飲水桶的木制支架(如圖1),若不計(jì)木條的厚度,其俯視圖如圖2所示,已知AD垂直平分BC,AD=BC=48cm,則圓柱形飲水桶的底面半徑的最大值是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)得到線段AD,其中連結(jié)BD,CD,

,,在圖1中補(bǔ)全圖形,并寫出m值.

如圖2,當(dāng)為鈍角,時(shí),m值是否發(fā)生改變?證明你的猜想.

如圖3,,BDAC相交于點(diǎn)O,求的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種水泥儲(chǔ)存罐的容量為25立方米,它有一個(gè)輸入口和一個(gè)輸出口.從某時(shí)刻開始,只打開輸入口,勻速向儲(chǔ)存罐內(nèi)注入水泥,3分鐘后,再打開輸出口,勻速向運(yùn)輸車輸出水泥,又經(jīng)過2.5分鐘儲(chǔ)存罐注滿,關(guān)閉輸入口,保持原來(lái)的輸出速度繼續(xù)向運(yùn)輸車輸出水泥,當(dāng)輸出的水泥總量達(dá)到8立方米時(shí),關(guān)閉輸出口.儲(chǔ)存罐內(nèi)的水泥量y(立方米)與時(shí)間x(分)之間的部分函數(shù)圖象如圖所示.

(1)求每分鐘向儲(chǔ)存罐內(nèi)注入的水泥量.

(2)當(dāng)3≤x≤5.5時(shí),求yx之間的函數(shù)關(guān)系式.

(3)儲(chǔ)存罐每分鐘向運(yùn)輸車輸出的水泥量是   立方米,從打開輸入口到關(guān)閉輸出口共用的時(shí)間為   分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,反比例函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)A(2 ,1),射線AB與反比例函數(shù)圖象交與另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.

(1)求k和a的值;
(2)直線AC的解析式;
(3)如圖3,M是線段AC上方反比例函數(shù)圖象上一動(dòng)點(diǎn),過M作直線l⊥x軸,與AC相交于N,連接CM,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們來(lái)定義一種新運(yùn)算:對(duì)于任意實(shí)數(shù)x、y,“※”a※b=(a+1)(b+1)﹣1

(1)計(jì)算(﹣3)※9

(2)嘉琪研究運(yùn)算“※”之后認(rèn)為它滿足交換律,你認(rèn)為她的判斷   (正確、錯(cuò)誤)

(3)請(qǐng)你幫助嘉琪完成她對(duì)運(yùn)算“※”是否滿足結(jié)合律的證明.

證明:由已知把原式化簡(jiǎn)得a※b=(a+1)(b+1)﹣1=ab+a+b

∵(a※b)※c=(ab+a+b)※c=   

a※(b※c)=   

   

運(yùn)算“※”滿足結(jié)合律.

查看答案和解析>>

同步練習(xí)冊(cè)答案