【題目】已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學的作業(yè):
甲:①連接OP,作OP的垂直平分線l,交OP于點A;
②以點A為圓心、OA為半徑畫弧、交⊙O于點M;
③作直線PM,則直線PM即為所求(如圖1).
乙:①讓直角三角板的一條直角邊始終經(jīng)過點P;
②調整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;
③作直線PM,則直線PM即為所求(如圖2).
對于兩人的作業(yè),下列說法正確的是( )
A. 甲乙都對B. 甲乙都不對
C. 甲對,乙不對D. 甲不對,已對
【答案】A
【解析】
(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(2)直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.
證明:(1)如圖1,連接OM,OA.
∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.
∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;
∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;
(2)如圖2.
∵直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.
故兩位同學的作法都正確.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】若|m+3|+=0,點P(m,n)關于x軸的對稱點P′為二次函數(shù)圖象頂點,則二次函數(shù)的解析式為( 。
A. y=(x﹣3)2+2B. y=(x+3)2﹣2
C. y=(x﹣3)2﹣2D. y=(x+3)2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與拋物線分別交于點A、點B,且點A在y軸上,拋物線的頂點C的坐標為.
(1)求拋物線的解析式;
(2)點P是線段AB上一動點,射線軸并與直線BC和拋物線分別交于點M、N,過點P作軸于點E,當PE與PM的乘積最大時,在y軸上找一點Q,使的值最大,求的最大值和此時Q的坐標;
(3)在拋物線上找一點D,使△ABD為直角三角形,求D點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一塊長和寬分別為40厘米和25厘米的長方形鐵皮,要在它的四角截去四個相等的小正方形,折成一個無蓋的長方體紙盒,使它的底面積為450平方厘米.那么紙盒的高是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某影院共有25排座位,第1排有11個座位數(shù),從第2排開始,每一排都比前一排增加m個座位.
(1)請你在下表的空格里填寫一個適當?shù)拇鷶?shù)式:
第1排的座位數(shù) | 第2排的座位數(shù) | 第3排的座位數(shù) | … | 第n排的座位數(shù) |
11 | 11+m | 11+2m | … | ______ |
(2)已知第18排座位數(shù)是第4排座位數(shù)的2倍,那么影院共有多少個座位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】清明節(jié)假期,小紅和小陽隨爸媽去旅游,他們在景點看到一棵古松樹,小紅驚訝的說:“呀!這棵樹真高!有60多米.”小陽卻不以為然:“60多米?我看沒有.”兩個人爭論不休,爸爸笑著說:“別爭了,正好我?guī)Я艘桓比前澹媚銈儗W過的知識量一量、算一算,看誰說的對吧!”
小紅和小陽進行了以下測量:如圖所示,小紅和小陽分別在樹的東西兩側同一地平線上,他們用手平托三角板,保持三角板的一條直角邊與地平面平行,然后前后移動各自位置,使目光沿著三角板的斜邊正好經(jīng)過樹的最高點,這時,測得小紅和小陽之間的距離為135米,他們的眼睛到地面的距離都是1.6米.
(1)請在指定區(qū)域內(nèi)畫出小紅和小陽測量古松樹高的示意圖;
(2)通過計算說明小紅和小陽誰的說法正確(計算結果精確到0.1)(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結論有________(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次蠟燭燃燒試驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示,請根據(jù)圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是 ,從點燃到燃盡甲所用的時間為 .
(2)分別求甲、乙兩根蠟燭燃燒時y與x之間的函數(shù)關系式;
(3)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么時間段內(nèi),甲蠟燭比乙蠟燭高?在什么時間段內(nèi),甲蠟燭比乙蠟低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com