【題目】如圖.已知在平面直角坐標(biāo)系中.點(diǎn) A(0,m),點(diǎn) B(n,0),D(2m,n),且 m、n 滿足(m﹣2)2+=0,將線段AB向左平移,使點(diǎn)B與點(diǎn) O重合,點(diǎn)C與點(diǎn)A對(duì)應(yīng).
(1)求點(diǎn)C、D的坐標(biāo);
(2)連接CD,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿射線OB方向運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使 SPCD=4SAOB,若存在,請(qǐng)求出t值,并寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)點(diǎn)C的坐標(biāo)為(﹣4,2);(2)P點(diǎn)坐標(biāo)為(4,0).
【解析】
(1)由(m﹣2)2+=0,得m=2,n=4,則A(0,2),B(4,0),D(4,4),
再由平移的性質(zhì)可得點(diǎn)C的坐標(biāo)為(﹣4,2);
(2)根據(jù)題意得[4﹣(﹣4)+t﹣(﹣4)]×4÷2﹣[4﹣(﹣4)]×(4﹣2)÷2﹣[t﹣(﹣4)]×2÷2,解得t=4,則P點(diǎn)坐標(biāo)為(4,0).
(1)∵(m﹣2)2+=0,
∴m﹣2=0,n﹣4=0,
解得m=2,n=4,
∴A(0,2),B(4,0),D(4,4),
∵將線段AB向左平移,使點(diǎn)B與點(diǎn)O重合,點(diǎn)C與點(diǎn)A對(duì)應(yīng),
∴點(diǎn)C的坐標(biāo)為(﹣4,2);
(2)存在.
如果SPCD=4SAOB,則有:
[4﹣(﹣4)+t﹣(﹣4)]×4÷2﹣[4﹣(﹣4)]×(4﹣2)÷2﹣[t﹣(﹣4)]×2÷2
=4×(4×2÷2),
解得t=4,
則P點(diǎn)坐標(biāo)為(4,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn),分別在邊,上,有下列條件:
①;②;③;④.其中,能使四邊形是平行四邊形的條件有( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(a,0),C(0,c)且滿足:(a+6)2+=0,長(zhǎng)方形ABCO在坐標(biāo)系中(如圖),點(diǎn)O為坐標(biāo)系的原點(diǎn).
(1)求點(diǎn)B的坐標(biāo).
(2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過點(diǎn)O),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
(3)如圖2,E為x軸負(fù)半軸上一點(diǎn),且∠CBE=∠CEB,F是x軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CD交BE的延長(zhǎng)線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°,
證明:過點(diǎn)C作CF∥AB.
∵AB∥CF(已知),
∴∠B= ( ).
∵AB∥DE,CF∥AB( 已知 ),
∴CF∥DE ( )
∴∠2+ =180° ( )
∵∠2=∠BCD﹣∠1,
∴∠D+∠BCD﹣∠B=180° ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, = = ,點(diǎn)E是點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn),M是AB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是真命題的是( )
A.一組對(duì)邊平行且有一組對(duì)角相等的四邊形是平行四邊形
B.對(duì)角線相等的四邊形是矩形
C.一組對(duì)邊平行且另一組對(duì)邊相等的四邊形是平行四邊形
D.對(duì)角線互相垂直且相等的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3 000名學(xué)生參加的“漢字聽寫大賽”,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
請(qǐng)根據(jù)所給信息,解答下列各題:
(1)a= ;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測(cè)試成績(jī)?cè)?/span>90分以上(包括90分)為“優(yōu)”等,則該校參加這次比賽的3 000名學(xué)生中成績(jī)?yōu)?/span>“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2(1﹣m)x+m2=0的兩實(shí)數(shù)根為x1 , x2 , 則y=x1+x2+2x1x2的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°,以點(diǎn)A為圓心,OA的長(zhǎng)為半徑作 交 于點(diǎn)C,若OA=2,則陰影部分的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com