【題目】某蔬菜加工公司先后兩批次收購(gòu)蒜薹(tái)共100噸.第一批蒜薹價(jià)格為4000元/噸;因蒜薹大量上市,第二批價(jià)格跌至1000元/噸.這兩批蒜薹共用去16萬(wàn)元.
(1)求兩批次購(gòu)進(jìn)蒜薹各多少噸;
(2)公司收購(gòu)后對(duì)蒜薹進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤(rùn)400元,精加工每噸利潤(rùn)1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為多少噸?最大利潤(rùn)是多少?
【答案】(1)第一批購(gòu)進(jìn)蒜薹20噸,第二批購(gòu)進(jìn)蒜薹80噸(2)精加工數(shù)量為75噸時(shí),獲得最大利潤(rùn),最大利潤(rùn)為85000元
【解析】試題分析:(1)設(shè)第一批購(gòu)進(jìn)蒜薹x噸,第二批購(gòu)進(jìn)蒜薹y噸.構(gòu)建方程組即可解決問(wèn)題.
(2)設(shè)精加工m噸,總利潤(rùn)為w元,則粗加工噸.由m≤3,解得m≤75,利潤(rùn)w=1000m+400=600m+40000,構(gòu)建一次函數(shù)的性質(zhì)即可解決問(wèn)題.
試題解析:(1)設(shè)第一批購(gòu)進(jìn)蒜薹x噸,第二批購(gòu)進(jìn)蒜薹y噸.
由題意,
解得,
答:第一批購(gòu)進(jìn)蒜薹20噸,第二批購(gòu)進(jìn)蒜薹80噸.
(2)設(shè)精加工m噸,總利潤(rùn)為w元,則粗加工噸.
由m≤3,解得m≤75,
利潤(rùn)w=1000m+400=600m+40000,
∵600>0,
∴w隨m的增大而增大,
∴m=75時(shí),w有最大值為85000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果商從批發(fā)市場(chǎng)用8000元購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價(jià)比小櫻桃的進(jìn)價(jià)每千克多20元.大櫻桃售價(jià)為每千克40元,小櫻桃售價(jià)為每千克16元.
(1)大櫻桃和小櫻桃的進(jìn)價(jià)分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場(chǎng)購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價(jià)不變,但在運(yùn)輸過(guò)程中小櫻桃損耗了20%.若小櫻桃的售價(jià)不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價(jià)最少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)媒體公布,我國(guó)國(guó)防科技大學(xué)研制的“天河二號(hào)”以每秒3386×1013次的浮點(diǎn)運(yùn)算速度第五次蟬聯(lián)冠軍,已知3386×1013的結(jié)果近似為3430000,用科學(xué)記數(shù)法把近似數(shù)3430000表示成a×10n的形式,則n的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩個(gè)數(shù)絕對(duì)值之差為0,則這兩個(gè)數(shù)( )
A.相等
B.互為相反數(shù)
C.都為0
D.相等或互為相反數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工人師傅用一塊長(zhǎng)為10dm,寬為6dm的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))
(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長(zhǎng)方體底面面積為12dm2時(shí),裁掉的正方形邊長(zhǎng)多大?
(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長(zhǎng)多大時(shí),總費(fèi)用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組要測(cè)量一棟五層居民樓CD的高度.該樓底層為車庫(kù),高2.5米;上面五層居住,每層高度相等.測(cè)角儀支架離地1.5米,在A處測(cè)得五樓頂部點(diǎn)D的仰角為60°,在B處測(cè)得四樓頂部點(diǎn)E的仰角為30°,AB=14米.求居民樓的高度(精確到0.1米,參考數(shù)據(jù): ≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)多邊形的一個(gè)頂點(diǎn)的所有對(duì)角線把多邊形分成9個(gè)三角形,這個(gè)多邊形的邊數(shù)是 ( )
A. 10 B. 11 C. 12 D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC的外側(cè)作直線BM,點(diǎn)A關(guān)于直線BM的對(duì)稱點(diǎn)為D,連結(jié)AD,CD,設(shè)CD交直線BM于點(diǎn)E.
(1)依題意補(bǔ)全圖1,若∠ABM=30°,求∠BCE的度數(shù);
(2)如圖2,若60°<∠ABM<90°,判斷直線BM和CD相交所成的銳角的度數(shù)是否為定值?若是,求出這個(gè)銳角的度數(shù);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,已知等腰直角三角形,點(diǎn)是斜邊上一點(diǎn)(不與重合),是的外接圓⊙的直徑.
(1)求證:是等腰直角三角形;
(2)若⊙的直徑為2,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com