【題目】已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.
(1)請問EG與CG存在怎樣的數量關系,并證明你的結論;
(2)將圖①中△BEF繞B點逆時針旋轉45°,如圖②所示,取DF中點G,連接EG,CG.問(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(3)將圖①中△BEF繞B點旋轉任意角度,如圖③所示,再連接相應的線段,問(1)中的結論是否仍然成立?(請直接寫出結果,不必寫出理由)
【答案】(1)證明見解析(2)證明見解析(3)結論仍然成立
【解析】
(1)利用直角三角形斜邊上的中線等于斜邊的一半,可證出CG=EG.
(2)結論仍然成立,連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點;再證明△DAG≌△DCG,得出AG=CG;再證出△DMG≌△FNG,得到MG=NG;再證明△AMG≌△ENG,得出AG=EG;最后證出CG=EG.
(3)結論依然成立.
(1)CG=EG.理由如下:
∵四邊形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G為DF的中點,∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG.
(2)(1)中結論仍然成立,即EG=CG.
證法一:連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點.
在△DAG與△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;
在△DMG與△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG.
∵∠EAM=∠AEN=∠AMN=90°,∴四邊形AENM是矩形,在矩形AENM中,AM=EN.在△AMG與△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.
證法二:延長CG至M,使MG=CG,連接MF,ME,EC.在△DCG與△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.
在Rt△MFE與Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE
∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC為直角三角形.
∵MG=CG,∴EG=MC,∴EG=CG.
(3)(1)中的結論仍然成立.理由如下:
過F作CD的平行線并延長CG交于M點,連接EM、EC,過F作FN垂直于AB于N.
由于G為FD中點,易證△CDG≌△MFG,得到CD=FM,又因為BE=EF,易證∠EFM=∠EBC,則△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.
∵G為CM中點,∴EG=CG,EG⊥CG
科目:初中數學 來源: 題型:
【題目】如圖,直線y=kx+b與x軸、y軸分別交于點A,B,且OA,OB的長(OA>OB)是方程x2-10x+24=0的兩個根,P(m,n)是第一象限內直線y=kx+b上的一個動點(點P不與點A,B重合).
(1)求直線AB的解析式.
(2)C是x軸上一點,且OC=2,求△ACP的面積S與m之間的函數關系式;
(3)在x軸上是否有在點Q,使以A,B,Q為頂點的三角形是等腰三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名運動員進行長跑訓練,兩人距終點的路程y(米)與跑步時間x(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答問題:
(1)他們在進行 米的長跑訓練,在0<x<15的時段內,速度較快的人是 ;
(2)求甲距終點的路程y(米)和跑步時間x(分)之間的函數關系式;
(3)當x=15時,兩人相距多少米?在15<x<20的時段內,求兩人速度之差.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知射線是的角平分線,,點是射線上的點,連接.
(1)如圖1,當點在射線上時,連接,.若,則的形狀是_____.
(2)如圖2,當點在射線的反向延長線上時,連接,.若,則(1)中的結論是否成立?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一種動畫程序,在平面直角坐標系屏幕上,直角三角形是黑色區(qū)域(含直角三角形邊界),其中A(1,1),B(2,1),C(1,3),用信號槍沿直線y=3x+b發(fā)射信號,當信號遇到黑色區(qū)域時,區(qū)域便由黑變白,則能夠使黑色區(qū)域變白的b的取值范圍是( )
A.﹣5≤b≤0B.﹣5<b≤﹣3C.﹣5≤b≤3D.﹣5≤b≤5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在邊長為4cm的正方形ABCD中,點P以每秒2cm的速度從點A出發(fā),沿AB→BC的路徑運動,到點C停止.過點P作PQ∥BD,PQ與邊AD(或邊CD)交于點Q,PQ的長度y(cm)與點P的運動時間x(秒)的函數圖象如圖②所示.當點P運動2.5秒時,PQ的長度是________cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是△ABC內一點,∠A=80°,BO、CO分別是∠ABC和∠ACB的角平分線,則∠BOC等于( 。
A. 140° B. 120° C. 130° D. 無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線(是常數)的頂點為,直線
求證:點在直線上;
當時,拋物線與軸交于,兩點,與軸交于點,與直線的另一個交點為,是軸下方拋物線上的一點,(如圖),求點的坐標;
若以拋物線和直線的兩個交點及坐標原點為頂點的三角形是等腰三角形,請直接寫出所有符合條件的的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,等邊中,點、分別在、上,,連、.
(1)求證:;
(2)如圖2,延長至點,使得,連,試判斷的形狀,并說明理由;
(3)在(2)的條件下,連,.若,則______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com