精英家教網 > 初中數學 > 題目詳情
正多邊形的邊長為2,中心到邊的距離為,則這個正多邊形的邊數為   
【答案】分析:設正多邊形的中心為O點,AB為邊長,OD⊥AB,垂足為D,依題意得AB=2,OD=,由正多邊形的性質可知OA=OB,根據等腰三角形的性質,可知AD=AB=1,∠AOB=2∠AOD,在Rt△AOD中,解直角三角形求∠AOD,再求∠AOB,確定正多邊形的邊數.
解答:解:如圖,設正多邊形的中心為O點,AB為邊長,
過O點作OD⊥AB,垂足為D,
依題意得AB=2,OD=,
∵OA=OB,
∴AD=AB=1,∠AOB=2∠AOD,
在Rt△AOD中,tan∠AOD===,
∴∠AOD=30°,
∴∠AOB=2∠AOD=60°,
∴正多邊形的邊數==6.
故答案為:6.
點評:本題考查了正多邊形和圓.關鍵是畫出正多邊形的兩條半徑與一邊構成的等腰三角形,作等腰三角形底邊上的高,把問題轉化到直角三角形中求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知正n邊形的周長為60,邊長為a.
(1)當n=3時,請直接寫出a的值;
(2)把正n邊形的周長和邊數同時增加8后,得到邊數為n+8,周長為68的正多邊形,設該正多邊形的邊長為b,有人分別取n等于9、20、30,再求出相應的a與b的值,然后斷言:“無論n取任何大于2的正整數,a與b一定不相等.”你認為這種說法對嗎?若不對,請利用所學知識求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

正多邊形的邊長為2,中心到邊的距離為
3
,則這個正多邊形的邊數為
 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知正n邊形的周長為60,邊長為a.
(1)當n=3時,請直接寫出a的值;
(2)把正n邊形的周長和邊數同時增加8后,得到邊數為n+8,周長為68的正多邊形,設該正多邊形的邊長為b,有人分別取n等于9、20、30,再求出相應的a與b的值,然后斷言:“無論n取任何大于2的正整數,a與b一定不相等.”你認為這種說法對嗎?若不對,請利用所學知識求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數學 來源:2010-2012學年北京四中九年級(上)期末數學試卷(解析版) 題型:填空題

正多邊形的邊長為2,中心到邊的距離為,則這個正多邊形的邊數為   

查看答案和解析>>

同步練習冊答案