閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數(shù)量關(guān)系.
解:(1)點E是四邊形ABCD的邊AB上的相似點。理由如下:
∵∠A=55°,∴∠ADE+∠DEA=125°。
∵∠DEC=55°,∴∠BEC+∠DEA=125°。
∴∠ADE=∠BEC。
∵∠A=∠B,∴△ADE∽△BEC。
∴點E是四邊形ABCD的AB邊上的相似點。
(2)作圖如下:
(3)∵點E是四邊形ABCM的邊AB上的一個強相似點,
∴△AEM∽△BCE∽△ECM。∴∠BCE=∠ECM=∠AEM。
由折疊可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD。
∴∠BCE=∠BCD=30°!郆E=CE=AB。
在Rt△BCE中,,
∴,∴。
解析試題分析:(1)要證明點E是四邊形ABCD的AB邊上的相似點,只要證明有一組三角形相似就行,很容易證明△ADE∽△BEC,所以問題得解。
(2)根據(jù)兩個直角三角形相似得到強相似點的兩種情況即可。
(3)因為點E是梯形ABCD的AB邊上的一個強相似點,所以就有相似三角形出現(xiàn),根據(jù)相似三角形的對應(yīng)線段成比例,可以判斷出AE和BE的數(shù)量關(guān)系,從而可求出解!
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直角△ABC中,∠C=90°,AB=2,sinB=,點P為邊BC上一動點,PD∥AB,PD交AC于點D,連結(jié)AP.
(1)求、的長;
(2)設(shè)的長為,的面積為.當(dāng)為何值時,最大并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊長為AO=6,AC=8,
(1)如圖①,E是OB的中點,將△AOE沿AE折疊后得到△AFE,點F在矩形AOBC內(nèi)部,延長AF交BC于點G.求點G的坐標(biāo);
(2)定義:若以不在同一直線上的三點中的一點為圓心的圓恰好過另外兩個點,這樣的圓叫做黃金圓.如圖②,動點P以每秒2個單位的速度由點C向點A沿線段CA運動,同時點Q以每秒4個單位的速度由點O向點C沿線段OC運動;求:當(dāng) PQC三點恰好構(gòu)成黃金圓時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知AB⊥BD,CD⊥BD
(1)若AB=9,CD=4,BD=10,請問在BD上是否存在P點,使以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似?若存在,求BP的長;若不存在,請說明理由;
(2)若AB=9,CD=4,BD=12,請問在BD上存在多少個P點,使以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似?并求BP的長;
(3)若AB=9,CD=4,BD=15,請問在BD上存在多少個P點,使以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似?并求BP的長;
(4)若AB=m,CD=n,BD=l,請問m,n,l滿足什么關(guān)系時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個P點?兩個P點?三個P點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在Rt△ABC,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點F,NE⊥AB于點E.
(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點,(1)中的兩個結(jié)論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,梯形ABCD中,AB∥CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點,EF與BD相交于點M。
(1)求證:△EDM∽△FBM;
(2)若DB=9,求BM.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com