【題目】如圖,已知∠AOB90°,∠BOC30°,OM平分∠AOCON平分∠BOC

1)求∠MON的度數(shù);

2)如果∠AOBα,其他條件不變,求∠MON的度數(shù).

【答案】145°;(2α

【解析】

1)先求得∠AOC的度數(shù),然后由角平分線的定義可知∠MOC60°,∠CON15°,最后根據(jù)∠MON=∠MOC﹣∠CON求解即可;

2)先求得∠AOCα+30°,由角平分線的定義可知∠MOCα+15°,∠CON15°,最后根據(jù)∠MON=∠MOC﹣∠CON求解即可.

解:(1)∵∠AOB90°,∠BOC30°,

∴∠AOC90°+30120°

由角平分線的性質(zhì)可知:∠MOCAOC60°,∠CONBOC15°

∵∠MON=∠MOC﹣∠CON,

∴∠MON60°15°45°;

2)∵∠AOBα,∠BOC30°,

∴∠AOCα+30°

由角平分線的性質(zhì)可知:∠MOCAOCα+15°,∠CONBOC15°

∵∠MON=∠MOC﹣∠CON

∴∠MONα+15°15°α

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某農(nóng)戶想建造一花圃,用來(lái)種植兩種不同的花卉,以供應(yīng)城鎮(zhèn)市場(chǎng)需要,現(xiàn)用長(zhǎng)為36m的籬笆,一面砌墻(墻的最大可使用長(zhǎng)度l=13m),圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃寬ABx,面積為S.

(1)求Sx的函數(shù)關(guān)系式.并指出它是一次函數(shù),還是二次函數(shù)?

(2)若要圍成面積為96m2的花圃,求寬AB的長(zhǎng)度.

(3)花圃的面積能達(dá)到108m2嗎?若能,請(qǐng)求出AB的長(zhǎng)度,若不能請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1, 分別為定角(大小不會(huì)發(fā)生改變) 內(nèi)部的兩條動(dòng)射線, 互補(bǔ),.

1)求的度數(shù):

2)如圖2,射線分別為的平分線,當(dāng)繞著點(diǎn)旋轉(zhuǎn)時(shí),下列結(jié)論:①的度數(shù)不變:②的度數(shù)不變,其中只有一個(gè)是正確的,請(qǐng)你做出正確的選擇并求值:

3)如圖3, 外部的兩條射線,且, ,當(dāng)繞著點(diǎn)旋轉(zhuǎn)時(shí), 的大小是否會(huì)發(fā)生變化?若不變,求出其度數(shù):若變化,說(shuō)明理由,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)求助沒(méi)有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣2,3),B(﹣5,1),C(﹣1,0).

(1)在圖中作出ABC關(guān)于x軸的對(duì)稱圖形A1B1C1;

(2)在圖中作出ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形A2B2C2,并寫(xiě)出A2點(diǎn)的坐標(biāo);

(3)在y軸上找一點(diǎn)P,使PAC的周長(zhǎng)最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點(diǎn),連接EF,點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s,同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s,解答下列問(wèn)題:

(1)求證:△BEF∽△DCB;

(2)當(dāng)點(diǎn)Q在線段DF上運(yùn)動(dòng)時(shí),若△PQF的面積為0.6cm2,求t的值;

(3)如圖2過(guò)點(diǎn)QQG⊥AB,垂足為G,當(dāng)t為何值時(shí),四邊形EPQG為矩形,請(qǐng)說(shuō)明理由;

(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A1,1,且與直線y=x2交于B,C兩點(diǎn).

1求拋物線的解析式及點(diǎn)C的坐標(biāo);

2求證:ABC是直角三角形;

3若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MNx軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列填空:

1)如圖,為直角,,且平分平分,的度數(shù).

2)如圖,,且平分平分.直接寫(xiě)出的度數(shù).

:1)因?yàn)?/span>,所以

因?yàn)?/span>平分,所以

因?yàn)?/span>平分,所以

所以

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=-x22xm+1交x軸于點(diǎn)A(a,0)和Bb,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=4;③拋物線上有兩點(diǎn)Px1y1)和Qx2,y2),若x1<1< x2,且x1x2>2,則y1> y2;④點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDFG周長(zhǎng)的最小值為.其中正確判斷的序號(hào)是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案