【題目】已知:如圖,一次函數(shù)y=kx+3的圖象與反比例函數(shù)y= (x>0)的圖象交于點P.PAx軸于點A,PBy軸于點B. 一次函數(shù)的圖象分別交x軸、y軸于點C. D,SDBP=27,

(1)求點D的坐標;

(2)求一次函數(shù)與反比例函數(shù)的解析式

【答案】(1)(0,3);(2)y=x+3,y=

【解析】

1)根據(jù)一次函數(shù)與y軸的交點,從而得出D點的坐標.

2)根據(jù)在RtCODRtCAP中,,OD=3,再根據(jù)SDBP=27,從而得

(1)∵一次函數(shù)y=kx+3y軸相交,

∴令x=0,解得y=3,D的坐標為(0,3);

(2)ODOAAPOA,

DCO=ACP,

DOC=CAP=90°,

RtCODRtCAP,OD=3,

AP=OB=6

DB=OD+OB=9,

RtDBP, =27,

BP=6,P(6,6),

P坐標代入y=kx+3,得到k= ,

則一次函數(shù)的解析式為:y=x+3;

P坐標代入反比例函數(shù)解析式得m=36,

則反比例解析式為:y= ;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知線段AB=12cm,點C為線段AB上的一動點,點D,E分別是ACBC中點.

1)若點C恰好是AB的中點,則DE=_______cm;

2)若AC=4cm,求DE的長;

3)試說明無論AC取何值(不超過12cm),DE的長不變;

4)如圖②,已知∠AOB=120°,過角的內部任一點C畫射線OC.OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數(shù)與射線OC的位置無關.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(探索新知)

如圖1,點C在線段AB上,圖中共有3條線段:AB、ACBC,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點C是線段AB的“二倍點”.

(1)一條線段的中點   這條線段的“二倍點”;(填“是”或“不是”)

(深入研究)

如圖2,若線段AB=20cm,點M從點B的位置開始,以每秒2cm的速度向點A運動,當點M到達點A時停止運動,運動的時間為t秒.

(2)問t為何值時,點M是線段AB的“二倍點”;

(3)同時點N從點A的位置開始,以每秒1cm的速度向點B運動,并與點M同時停止.請直接寫出點M是線段AN的“二倍點”時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為豐富學生課余生活,我校準備開設興趣課堂.為了了解學生對繪畫、書法、舞蹈、樂器這四個興趣小組的喜愛情況,在全校進行隨機抽樣調查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖(信息尚不完整),請根據(jù)圖中提供的信息,解答下面的問題:

1)此次共調查了多少名同學?

2)將條形圖補充完整,并計算扇形統(tǒng)計圖中樂器部分的圓心角的度數(shù);

3)如果我校共有1000名學生參加這4個課外興趣小組,而每個教師最多只能輔導本組的25名學生,估計書法興趣小組至少需要準備多少名教師?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,點P是邊AD上的動點(點P不與點A、點D重合),點Q是邊CD上一點,聯(lián)結PB、PQ,且∠PBC=∠BPQ.

(1)當QD=QC時,求∠ABP的正切值;

(2)設AP=x,CQ=y,求y關于x的函數(shù)解析式;

(3)聯(lián)結BQ,在△PBQ中是否存在度數(shù)不變的角?若存在,指出這個角,并求出它的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀下面材料:

AB在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為|AB|.當A、B兩點中有一點在原點時,不妨設點A在原點,如圖1,|AB||OB||b||ab|;當AB兩點都不在原點時,

①如圖2,點A、B都在原點的右邊|AB||OB||OA||b||a|ba|ab|

②如圖3,點A、B都在原點的左邊,|AB||OB||OA||b||a|=﹣b﹣(﹣a)=|ab|;

③如圖4,點A、B在原點的兩邊,|AB||OB|+|OA||a|+|b|a+(﹣b)=|ab|

2)回答下列問題:

①數(shù)軸上表示25的兩點之間的距離是   ,數(shù)軸上表示﹣2和﹣5的兩點之間的距離是   ,數(shù)軸上表示1和﹣3的兩點之間的距離是   ;

②數(shù)軸上表示x和﹣1的兩點AB之間的距離是   ,如果|AB|2,那么x   ;

③代數(shù)式|x+1|+|x2|取最小值時,相應的整數(shù)x的取值是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖矩形ABCD,AB=12,BC=8,EF分別為AB、CD的中點,PQA. C同時出發(fā),在邊AD、CB上以每秒1個單位向D、B運動,運動時間為t(0<t<8).

(1)如圖1,連接PEEQ、QFPF,求證:無論t0<t<8內取任何值,四邊形PEQF總為平行四邊形;

(2)如圖2,連接PQCEG,若PG=4QG,求t的值;

(3)在運動過程中,是否存在某時刻使得PQCEG?若存在,請求出t的值:若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,點MCD中點,將MBC沿BM翻折至MBE,若AME α,∠ABE β,則 α β 之間的數(shù)量關系為( )

A. α+3β=180° B. β-α=20° C. α+β=80° D. 3β-2α=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一塊瓷磚的圖案,用這種瓷磚來鋪設地面,如果鋪成一個2×2的正方形圖案如圖,其中完整的圓共有5個,如果鋪成一個3×3的正方形圖案如圖,其中完整的圓共有13個,如果鋪成一個4×4的正方形圖案如圖,其中完整的圓共有25個,若這樣鋪成一個10×10的正方形圖案,則其中完整的圓共有( ).

A.145 B.146 C.180 D.181

查看答案和解析>>

同步練習冊答案