【題目】如圖,在等邊中,延長(zhǎng)至點(diǎn),延長(zhǎng)的中垂線于點(diǎn),連接

1)如圖1,若,,求的長(zhǎng);

2)如圖2,連接于點(diǎn),在上取一點(diǎn),連接于點(diǎn),且,求證:;

3)在(2)的條件下,若直接寫出線段,,的等量關(guān)系

【答案】1;(2)詳見(jiàn)解析;(3

【解析】

1)過(guò)點(diǎn)于點(diǎn),分別求出BH,BE,根據(jù)勾股定理問(wèn)題得解;

2)如圖在上取一點(diǎn),使,連接,先證明,再證明,問(wèn)題得證;

3)過(guò)點(diǎn)的垂線,構(gòu)造出一個(gè),的三角形和一個(gè)等腰直角三角形,借助(2)的結(jié)論,設(shè),通過(guò)解兩個(gè)直角三角形,代換的關(guān)系,得出結(jié)論.

解:(1)如圖,過(guò)點(diǎn)于點(diǎn),

在等邊中∵

,

點(diǎn)EBD的垂直平分線上,

,

2)如圖在上取一點(diǎn),使,連接

中,

設(shè)

3)如圖,設(shè),DP=y,

過(guò)點(diǎn),垂足為P,

∵∠AED=45°, A=60°,

,

,

BD=AD-AB=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中有4個(gè)大小、質(zhì)地完全相同的乒乓球,球面上都各標(biāo)一個(gè)不小于-2的數(shù),已知其中3個(gè)乒乓球上標(biāo)的數(shù)分別是-2,24,所標(biāo)的4個(gè)數(shù)的中位數(shù)是0

1)求這4個(gè)數(shù)的眾數(shù);

2)從這個(gè)口袋中隨機(jī)摸出1個(gè)球,求摸出的球面上的數(shù)是正數(shù)的概率;

3)從這個(gè)口袋中隨機(jī)摸出1個(gè)球(不放回),再?gòu)挠嘞碌那蛑须S機(jī)摸出1個(gè)球,用列表法求兩次摸出的球面上的數(shù)之和為負(fù)數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年年初以來(lái),全國(guó)多地豬肉價(jià)格連續(xù)上漲,引起了民眾與政府的高度關(guān)注,政府向市場(chǎng)投入儲(chǔ)備豬肉進(jìn)行了價(jià)格平抑.據(jù)統(tǒng)計(jì):某超市2020110日豬肉價(jià)格比去年同一天上漲了40%,這天該超市每千克豬肉價(jià)格為56元.

1)求2019110日,該超市豬肉的價(jià)格為每千克多少元?

2)現(xiàn)在某超市以每千克46元的價(jià)格購(gòu)進(jìn)豬肉,按2020110日價(jià)格出售,平均一天能銷售100千克.經(jīng)調(diào)查表明:豬肉的售價(jià)每千克下降1元,平均每日銷售量就增加20千克,超市為了實(shí)現(xiàn)銷售豬肉平均每天有1120元的銷售利潤(rùn),在盡可能讓利于顧客的前提下,每千克豬肉應(yīng)該定價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形和正六邊形邊長(zhǎng)均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第二次旋轉(zhuǎn);此時(shí)點(diǎn)經(jīng)過(guò)路徑的長(zhǎng)為___________.若按此方式旋轉(zhuǎn),共完成六次,在這個(gè)過(guò)程中點(diǎn),之間距離的最大值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的對(duì)稱軸是直線,且過(guò)點(diǎn),頂點(diǎn)位于第二象限,其部分圖象如圖所示,給出以下判斷;①;②;③;④;⑤直線與拋物線兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,則.其中結(jié)論正確是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組

請(qǐng)結(jié)合題意,完成本題解答.

(1)解不等式①,得_________________;

(2)解不等式②,得:_________________;

(3)原不等式組的解集為_(kāi)________________;

(4)把不等式組的解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為調(diào)查學(xué)生對(duì)信管肺炎疫情防控知識(shí)的了解情況,對(duì)400名學(xué)生進(jìn)行相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),一下是根據(jù)數(shù)據(jù)繪制的統(tǒng)計(jì)圖表的一部分.

下面有四個(gè)推斷:400名學(xué)生測(cè)試成績(jī)的平均數(shù)一定在74.3-75.3之間;②這400名學(xué)生測(cè)試成績(jī)的中位數(shù)在70-80之間;③這400名學(xué)生中的初中生測(cè)試成績(jī)的中位數(shù)可能在60-70之間;④這400名學(xué)生中的高中生測(cè)試成績(jī)的中位數(shù)一定在60-70之間;其中合理型推斷的序號(hào)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,漏壺是一種古代計(jì)時(shí)器.在它內(nèi)部盛一定量的水,水從壺下的小孔漏出.壺內(nèi)壁有刻度,人們根據(jù)壺中水面的位置計(jì)算時(shí)間.用x(小時(shí))表示漏水時(shí)間,y(厘米)表示壺底到水面的高度,某次計(jì)時(shí)過(guò)程中,記錄到部分?jǐn)?shù)據(jù)如下表:

漏水時(shí)間x(小時(shí))

3

4

5

6

壺底到水面高度y(厘米)

9

7

5

3

1)問(wèn)yx的函數(shù)關(guān)系屬于一次函數(shù)、二次函數(shù)和反比例函數(shù)中的哪一種?求出該函數(shù)解析式及自變量x的取值范圍;

2)求剛開(kāi)始計(jì)時(shí)時(shí)壺底到水面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)Ax1,1)、Bx2,﹣2)、Cx3,﹣3)在反比例函數(shù)y=﹣的圖象上,則x1、x2、x3的大小關(guān)系是( 。

A.x1x2x3B.x1x3x2C.x3x1x2D.x2x1x3

查看答案和解析>>

同步練習(xí)冊(cè)答案