如圖,排球運動員甲站在點O處練習(xí)發(fā)球,球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.若把球看成點,其運行的高度y(m)與運行的水平距離x(m)是二次函數(shù)關(guān)系.以O(shè)為原點建立平面直角坐標(biāo)系.
(1)在某一次發(fā)球時,甲將球從O點正上方2m的A處發(fā)出,已知球的最大飛行高度為2.6m,此時距O點的水平距離為6m.
①求拋物線的解析式.
②球能否越過球網(wǎng)?球會不會出界?請說明理由.
(2)若球的最大飛行高度時距O點的水平距離6m不變,要使球一定能越過球網(wǎng),又不出邊界,求二次函數(shù)中二次項系數(shù)的最大值.
(1)①設(shè)拋物線的解析式為y=a(x-6)2+2.6,由題意,得
2=a(0-6)2+2.6,
解得:a=-
1
60
,
∴拋物線的解析式為:y=-
1
60
(x-6)2+2.6;
②x=9時,
y=-
1
60
(9-6)2+2.6=2.45.
∵2.45>2.43,
∴球能越過球網(wǎng);
當(dāng)x=18時,
y=-
1
60
(18-6)2+2.6,
解得:y=0.2>0,
∴球會出界;

(3)設(shè)拋物線的解析式為y=a(x-6)2+h,由題意得:2=a(0-6)2+h,
∴a=
2-h
36

∴y=
2-h
36
(x-6)2+h,
∴當(dāng)x=9時,y=
2-h
36
(9-6)2+h=
2+3h
4
>2.43,
當(dāng)x=18時,y=
2-h
36
(18-6)2+h=8-3h≤0,
2+3h
4
>2.43
8-3h≤0
,
解得:h≥
8
3
,
當(dāng)h=
8
3
時,a最大,
∴二次項系數(shù)的最大值為:
2-
8
3
36
=-
1
54
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的頂點是(-1,-2),且過點(1,10).求此拋物線對應(yīng)的二次函數(shù)關(guān)系式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)在拋物線上求點M,使△MOB的面積是△AOB面積的3倍;
(3)連接OA,AB,在x軸下方的拋物線上是否存在點N,使△OBN與△OAB相似?若存在,求出N點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2
+bx+c與y軸相交于C,與x軸相交于A、B,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,-1).
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連接DC,當(dāng)△DCE的面積最大時,求點D的坐標(biāo);
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,-3)、B(3,2)兩點,且與x軸相交于M、N兩點,當(dāng)以線段MN為直徑的圓的面積最小時,求M、N兩點的坐標(biāo)和四邊形AMBN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2+bx+c的圖象經(jīng)過(1,0)和(0,3)兩點,它的部分圖象如下圖.
(1)求b、c的值;
(2)寫出當(dāng)y>0時,x的取值范圍;
(3)求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若f(x)>0,符號
ba
f(x)dx
表示函數(shù)y=f(x)的圖象與過點(a,0),(b,0)且和x軸垂直的直線及x軸圍成圖形的面積.如圖,
21
(x+1)dx
表示梯形ABCD的面積.設(shè)A=
21
2
x
dx
B=
21
(-x+3)dx
,C=
21
(-
3
2
x2+
7
2
x)dx
,則A,B,C中最大的是( 。
A.AB.BC.CD.無法比較

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,正方形ABOD的邊長為a,O為原點,點B在x軸的負半軸上,點D在y軸的正半軸上,直線OE的解析式為y=2x,直線CF過x軸上的一點C(-
3
5
a
,0)且與OE平行,現(xiàn)正方形以每秒
a
10
的速度勻速沿x軸正方向平行移動,設(shè)運動時間為t秒,正方形被夾在直線OE和CF間的部分的面積為S.
(1)當(dāng)0≤t<4時,寫出S與t的函數(shù)關(guān)系式;
(2)當(dāng)4≤t≤5時,寫出S與t的函數(shù)關(guān)系式,在這個范圍內(nèi)S有無最大值?若有,請求出最大值,若沒有請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某汽車制造公司計劃生產(chǎn)A、B、C三種型號的汽車共80輛.并且公司在設(shè)計上要求,A、C兩種型號之間按如圖所示的函數(shù)關(guān)系生產(chǎn).該公司投入資金不少于1212萬元,但不超過1224萬元,且所有資金全部用于生產(chǎn)這三種型號的汽車,三種型號的汽車生產(chǎn)成本和售價如下表:
ABC
成本(萬元/輛)121518
售價(萬元/輛)141822
設(shè)A種型號的汽車生產(chǎn)x輛;
(1)設(shè)C種型號的汽車生產(chǎn)y輛,求出y與x的函數(shù)關(guān)系式;
(2)該公司對這三種型號汽車有哪幾種生產(chǎn)方案?
(3)設(shè)該公司賣車獲得的利潤W萬元,求公司如何生產(chǎn)獲得利潤最大?
(4)根據(jù)市場調(diào)查,每輛A、B型號汽車的售價不會改變,每輛C型號汽車在不虧本的情況下售價將會降價a萬元(a>0),且所生產(chǎn)的三種型號汽車可全部售出,該公司又將如何生產(chǎn)獲得利潤最大?(注:利潤=售價-成本)

查看答案和解析>>

同步練習(xí)冊答案