如圖,在等腰梯形ABCD中,AD∥BC,AD=AB.過(guò)A作AF⊥BD,交BC于G,延長(zhǎng)BC至E,使CE=CD.
(1)請(qǐng)指出四邊形ACED的形狀,并證明;
(2)如果BD=8,AG=6,求△BDE的面積.

【答案】分析:(1)根據(jù)ABCD是等腰梯形,得出AD=AB=CD=CE,AD∥CE,即可證出四邊形ACED的形狀;
(2))根據(jù)已知條件得出∠ADB=∠ABD,∠ADB=∠DBC,∠ABD=∠DBC,再根據(jù)BF=BF,∠AFB=∠GFB=90°,證出△AFB≌△GFB,得出BF和AB的值,再由(1)可得AC∥DE,∠E=∠ACB,在等腰梯形ABCD中,得出∠ACB=∠DBC,∠E=∠DBC=∠ABD.從而證出△ABD∽△DBE,再根據(jù)相似比得出△BDE的面積.
解答:解:(1)四邊形ACED為平行四邊形,
在等腰梯形ABCD中,AD=AB=CD=CE,AD∥CE,
∴四邊形ACED為平行四邊形.
(2)∵AB=AD,
∴∠ADB=∠ABD.
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,而B(niǎo)F=BF,∠AFB=∠GFB=90°.
∴△AFB≌△GFB.
∴AF=GF=3.
又∵AG垂直平分BD,
∴BF=4.
在Rt△AFB中,得AB=5.
由(1)可得AC∥DE.
∴∠E=∠ACB.
∵四邊形ABCD是等腰梯形,
∴AC=DB,
∵四邊形ADEC是平行四邊形,
∴AC=DE,
∴DE=BD,
∴∠E=∠DBC,
∴∠E=∠DBC=∠ADB=∠ABD,
∴△ABD∽△DBE,
=,而S△ABD=12,
∴S△BDE=
點(diǎn)評(píng):本題考查了等腰梯形的性質(zhì),三角形的面積,相似三角形的判定與性質(zhì),平行四邊形的判定等知識(shí)點(diǎn)的理解和掌握,綜合運(yùn)用性質(zhì)進(jìn)行解答是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問(wèn)是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線(xiàn)移動(dòng),且PQ∥DC,若AP=x,梯形位于線(xiàn)段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)當(dāng)線(xiàn)段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線(xiàn)段PQ與梯形AB∥⊥CD的中位線(xiàn)EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖說(shuō)明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線(xiàn)l經(jīng)過(guò)梯形中位線(xiàn)的中點(diǎn)并滿(mǎn)足什么條件時(shí),一定能平分梯形的面積?(只要求說(shuō)出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案