【題目】如圖,Rt△ABC中∠C=90°、∠A=30°,在AC邊上取點(diǎn)O畫圓使⊙O經(jīng)過A、B兩點(diǎn),
(1)求證:以O為圓心,以OC為半徑的圓與AB相切.
(2)下列結(jié)論正確的序號是___________.(少選酌情給分,多選、錯(cuò)均不給分)
①AO=2CO ;
②AO=BC;
③延長BC交⊙O與D,則A、B、D是⊙O的三等分點(diǎn).
④圖中陰影面積為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④;⑤.其中正確的是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于,與軸相交于點(diǎn),過點(diǎn)C作軸,交拋物線于點(diǎn).
(1)求梯形ACDB的面積;
(2)若梯形ACDB的對角線交于點(diǎn),求點(diǎn)的坐標(biāo),并求經(jīng)過三點(diǎn)的拋物線的解析式; .
(3)點(diǎn)是射線上一點(diǎn),且與相似,求符合條件的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2m﹣1)x+m2+1=0有兩個(gè)不相等實(shí)數(shù)根x1,x2
(1)求實(shí)數(shù)m的取值范圍;
(2)若x12+x22=x1x2+3時(shí),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的柑橘,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元;市場調(diào)查發(fā)現(xiàn),若每箱以45元的價(jià)格銷售,平均每天銷售105箱;每箱以50元的價(jià)格銷售,平均每天銷售90箱.假定每天銷售量y(箱)與銷售價(jià)x(元/箱)之間滿足一次函數(shù)關(guān)系式.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時(shí),做擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn).
他們在一次實(shí)驗(yàn)中共擲骰子次,試驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | ||||||
出現(xiàn)的次數(shù) |
①填空:此次實(shí)驗(yàn)中“點(diǎn)朝上”的頻率為________;
②小紅說:“根據(jù)實(shí)驗(yàn),出現(xiàn)點(diǎn)朝上的概率最大.”她的說法正確嗎?為什么?
小穎和小紅在實(shí)驗(yàn)中如果各擲一枚骰子,那么兩枚骰子朝上的點(diǎn)數(shù)之和為多少時(shí)的概率最大?試用列表或畫樹狀圖的方法加以說明,并求出其最大概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象相交于A(m,4)、B(2,﹣6)兩點(diǎn),過A作AC⊥x軸交于點(diǎn)C,連接OA.
(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)若直線AB上有一點(diǎn)M,連接MC,且滿足S△AMC=3S△AOC,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知點(diǎn)在線段上,在和中,,,
,且為的中點(diǎn).
(1)連接并延長交于,求證:;
(2)直接寫出線段與的關(guān)系: ;
(3)若將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)在線段的延長線上(如圖②所示位置),則(2)中的結(jié)論是否仍成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com