如圖(1)△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,將△DEF繞點A順時針旋轉(zhuǎn),當DF邊與AB邊重合時,旋轉(zhuǎn)中止.現(xiàn)不考慮旋轉(zhuǎn)開始和結(jié)束時重合的情況,設(shè)DE,DF(或它們的延長線)分別交BC(或它的延長線) 于G,H點,如圖(2)

(1)問:始終與△AGC相似的三角形有              ;
(2)設(shè)CG=x,BH=y,求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)圖(2)的情形說明理由)
(3)問:當x為何值時,△AGH是等腰三角形.
(1)∵△ABC與△EFD為等腰直角三角形,AC與DE重合,
∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,
∴∠H=∠CAG,
∵∠ACG=∠B=45°,
∴△AGC∽△HAB,
∴同理可得出:始終與△AGC相似的三角形有△HAB和△HGA;
故答案為:△HAB和△HGA.
(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=(9≥x>0),
答:y關(guān)于x的函數(shù)關(guān)系式為y=(9≥x>0).

(3)當CG<BC時,∠GAC=∠H<∠HAG,
∴AC<CH,
∵AG<AC,
∴AG<CH<GH,
又∵AH>AG,AH>GH,
此時,△AGH不可能是等腰三角形,
當CG=BC時,G為BC的中點,H與C重合,△AGH是等腰三角形,
此時,GC=,即x=,
當CG>BC時,由(1)△AGC∽△HGA,
所以,若△AGH必是等腰三角形,只可能存在AG=AH,
若AG=AH,則AC=CG,此時x=9,
當CG=BC時,注意:DF才旋轉(zhuǎn)到與BC垂直的位置,此時B,E,G重合,∠AGH=∠GAH=45°,
所以△AGH為等腰三角形,所以CG=9
綜上所述,當x=9或x=或9時,△AGH是等腰三角形.
(1)根據(jù)△ABC與△EFD為等腰直角三角形,AC與DE重合,利用相似三角形的判定定理即可得出結(jié)論.
(2)由△AGC∽△HAB,利用其對應(yīng)邊成比例列出關(guān)于x、y的關(guān)系式:9:y=x:9即可.
(3)此題要采用分類討論的思想,當CG<BC時,當CG=BC時,當CG>BC時分別得出即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖,已知,求的值;
(2)如果,那么成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,E,F(xiàn)分別是CD,BC上的點,若∠AEF=90°,則一定有                          
A.△ADE∽△AEFB.△ADE∽△ECFC.△ECF∽△AEF D.△AEF∽△ABF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B=900,點P在BC邊上,當
∠APD=900時,易證,從而得到,解答下列問題.
(1)模型探究1:如圖2,在四邊形ABCD中,點P在BC邊上,當∠B=∠C=∠APD時, 結(jié)論仍成立嗎? 試說明理由;
(2)拓展應(yīng)用:如圖3,M為AB的中點,AE與BD交于點C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=,AF=3,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知,CE是Rt△ABC的斜邊AB上的高,點P是CE的延長線上任意一點,BG⊥AP,
求證:(1)△AEP∽△DEB
(2) CE2=ED·EP

若點P在線段CE上或EC的延長線上時(如圖2和圖3),上述結(jié)論CE2=ED·EP還成立嗎?若成立,請給出證明;若不成立,請說明理由.(圖2和圖3挑選一張給予說明即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].

(1)如圖①,對△ABC作變換[60°,]得△AB′C′,則S△AB′C′:S△ABC=   ;直線BC與直線B′C′所夾的銳角為   度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平行四邊形ABCD中,點E為AD的中點,連接BE,交AC于點F,則S△AEF:S△BCF的值是(     )
A.B.C.D.
                       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,DE∥BC,CD和BE相交于點O,=4:25,則AD:DB=_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在相同時刻的物高與影長成比例,如果高為1.5米的測竿的影長為3米,那么影長為30米的旗桿的高是 (    )
A.20米B.18米C.16米D.15米

查看答案和解析>>

同步練習冊答案