【題目】小紅要外出參加一項慶;顒,需網(wǎng)購一個拉桿箱,圖1,圖2分別是她上網(wǎng)時看到的某種型號拉桿箱的實物圖與示意圖,并獲得了如下信息:滑桿DE,箱長BC,拉桿AB的長度都相等,B,F在AC上,C在DE上,支桿DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,求AC的長度(結(jié)果保留根號).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于函數(shù)y,我們稱函數(shù)叫做函數(shù)|y|的正值函數(shù).例如:函數(shù)y的正值函數(shù)為y=||.
如圖,曲線y(x>0)請你在圖中畫出y=x+3的正值函數(shù)的圖象.
(1)寫出y=x+3的正值函數(shù)的兩條性質(zhì);
(2)y=x+3的正值函數(shù)的圖象與x軸、y軸、曲線y(x>0)的交點分別是A,B,C.點D是線段AC上一動點(不包括端點),過點D作x軸的平行線,與正值函數(shù)圖象交于另一點E,與曲線交于點P.
①試求△PAD的面積的最大值;
②探索:在點D運動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點D的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)過點E(8,0),矩形ABCD的邊AB在線段OE上(點A在點B的左側(cè)),點C、D在拋物線上,∠BAD的平分線AM交BC于點M,點N是CD的中點,已知OA=2,且OA:AD=1:3.
(1)求拋物線的解析式;
(2)F、G分別為x軸,y軸上的動點,順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長的最小值;
(3)在x軸下方且在拋物線上是否存在點P,使△ODP中OD邊上的高為?若存在,求出點P的坐標;若不存在,請說明理由;
(4)矩形ABCD不動,將拋物線向右平移,當平移后的拋物線與矩形的邊有兩個交點K、L,且直線KL平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東營市某學(xué)校九年級一班開展了“讀一本好書”的活動,班委會對學(xué)生閱讀書籍的情況進行了問卷調(diào)查,問卷設(shè)置了“小說”、“戲劇”、“散文”、“其他”四個類別,每位同學(xué)僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.根據(jù)圖表提供的信息,回答下列問題:
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | n |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | m | 1 |
(1)計算m= ,n= .
(2)在扇形統(tǒng)計圖中,“其他”類所在的扇形圓心角為 ;
(3)這個學(xué)校共有1000人,則讀了戲劇類書籍的學(xué)生大約有多少人?
(4)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團,請用畫樹狀圖或列表的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,第一象限內(nèi)的點A在反比例函數(shù)y=上,第二象限的點B在反比例函數(shù)y=上,且OA⊥OB,,BC、AD垂直于x軸于C、D,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點C(3,4)的直線交軸于點A,∠ABC=90°,AB=CB,曲線過點B,將點A沿軸正方向平移個單位長度恰好落在該曲線上,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點是直線上一動點,點是直線上動點,點是直線上一動點,且,.
(1)如圖1,當點,,分別在,,邊上時,請你判斷線段,,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論;
(2)如圖2,當在延長線上,在延長線上,在延長線上時,(1)中的結(jié)論是否成立?若成立,請利用圖2證明;若不成立,請判斷線段,,之間有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(3)若,當時,請直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,AD=AE,BD和CE相交于點O.
(1)求證:△ABD≌△ACE;
(2)判斷△BOC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,點E在直線CD上,且DE=1,連接BE,作AF⊥BE于點H,交直線BC于點F,連接EF,則EF的長是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com