【題目】已知一次函數(shù)y=2x+b.

(1)它的圖像與兩坐標(biāo)軸所圍成的圖形的面積等于4,b的值;

(2)它的圖像經(jīng)過一次函數(shù)y=-2x+1、y=x+4圖像的交點,b的值.

【答案】1±4;(25

【解析】

1)分別求出一次函數(shù)y=2x+b與坐標(biāo)軸的交點,然后根據(jù)它的圖象與坐標(biāo)軸所圍成的圖象的面積等于4列出方程即可求出b的值;

2)由題意可知:三條直線交于一點,所以可先求出一次函數(shù)y=-2x+1y=x+4的交點坐標(biāo),然后代入y=2x+b求出b的值.

解:(1)令x=0代入y=2x+b

∴y=b,

y=0代入y=2x+b,

∴x=-,

∵y=2x+b的圖象與坐標(biāo)軸所圍成的圖象的面積等于4

×|b|×|-|=4,

∴b2=16

∴b=±4;

2)聯(lián)立,

解得:,

把(-1,3)代入y=2x+b

∴3=-2+b,

∴b=5,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是等邊ABC內(nèi)一點.將BOC繞點C按順時針方向旋轉(zhuǎn)60°ADC,連接OD.已知∠AOB=110°

1)求證:COD是等邊三角形;

2)當(dāng)α=150°時,試判斷AOD的形狀,并說明理由;

3)探究:當(dāng)α為多少度時,AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,∠C=90°ACBC,若DBC上一點,且到A,B兩點距離相等.

1)利用尺規(guī),作出點D的位置(不寫作法,保留作圖痕跡);

2)連結(jié)AD,若AB=5,AC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 平面直角坐標(biāo)系中,過點C2828)分別作x軸、y軸的垂線,垂足分別為B、A,一次函數(shù)y=x+3的圖像分別與x軸和CB交于點D、E,點PDE中點,連接AP.

⑴ 求點D與點E的坐標(biāo); ⑵求證:△ADO≌△AEC;⑶ 求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,無論k取何實數(shù),直線y=(k-1)x+4-5k總經(jīng)過定點P,則點P與動點Q(5m-1,5m+1)的距離的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.乙兩種商品原來的單價和為100元,因市場變化,甲商品降價10%,乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%.若設(shè)甲.乙兩種商品原來的單價分別為x.y元,則可列方程組為_________________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于、兩點,拋物線經(jīng)過、兩點,與軸的另一個交點為,連接

(1)求拋物線的解析式及點的坐標(biāo);

(2) 在拋物線上,連接 ,當(dāng) 時,求點的坐標(biāo);

(3)從點出發(fā),沿線段運動,同時點從點出發(fā),沿線段運動, 、的運動速度都是每秒個單位長度,當(dāng)點到達(dá)點時,同時停止運動,試問在坐標(biāo)平面內(nèi)是否存在點,使、運動過程中的某一時刻,以、、為頂點的四邊形為菱形?若存在,直接寫出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1:y=kx+1,與x軸相交于點A,同時經(jīng)過點B(2,3),另一條直線l2經(jīng)過點B,且與x軸相交于點P(m,0).

(1)求l1的解析式;

(2)若S△APB=3,求P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠工人小王某月工作的部分信息如下:

信息一:工作時間:每天上午8:00~12:00,下午14:00~18:00,每月25天;

信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于45.

生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關(guān)系見下表:

生產(chǎn)甲產(chǎn)品件數(shù)(件)

生產(chǎn)乙產(chǎn)品件數(shù)(件)

所用總時間(分)

10

10

500

15

20

900

信息三:按件計酬,每生產(chǎn)一件甲產(chǎn)品可得6元,每生產(chǎn)一件乙產(chǎn)品可得10.

根據(jù)以上信息,回答下列問題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分?

(2)小王該月最多能得多少元?此時生產(chǎn)甲、乙兩種產(chǎn)品分別多少件?

查看答案和解析>>

同步練習(xí)冊答案