【題目】已知一次函數(shù)y=2x+b.
(1)它的圖像與兩坐標(biāo)軸所圍成的圖形的面積等于4,求b的值;
(2)它的圖像經(jīng)過一次函數(shù)y=-2x+1、y=x+4圖像的交點,求b的值.
【答案】(1)±4;(2)5
【解析】
(1)分別求出一次函數(shù)y=2x+b與坐標(biāo)軸的交點,然后根據(jù)它的圖象與坐標(biāo)軸所圍成的圖象的面積等于4列出方程即可求出b的值;
(2)由題意可知:三條直線交于一點,所以可先求出一次函數(shù)y=-2x+1與y=x+4的交點坐標(biāo),然后代入y=2x+b求出b的值.
解:(1)令x=0代入y=2x+b,
∴y=b,
令y=0代入y=2x+b,
∴x=-,
∵y=2x+b的圖象與坐標(biāo)軸所圍成的圖象的面積等于4,
∴×|b|×|-|=4,
∴b2=16,
∴b=±4;
(2)聯(lián)立,
解得:,
把(-1,3)代入y=2x+b,
∴3=-2+b,
∴b=5,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD.已知∠AOB=110°.
(1)求證:△COD是等邊三角形;
(2)當(dāng)α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)α為多少度時,△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,∠C=90°,AC<BC,若D為BC上一點,且到A,B兩點距離相等.
(1)利用尺規(guī),作出點D的位置(不寫作法,保留作圖痕跡);
(2)連結(jié)AD,若AB=5,AC=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 平面直角坐標(biāo)系中,過點C(28,28)分別作x軸、y軸的垂線,垂足分別為B、A,一次函數(shù)y=x+3的圖像分別與x軸和CB交于點D、E,點P 是DE中點,連接AP.
⑴ 求點D與點E的坐標(biāo); ⑵求證:△ADO≌△AEC;⑶ 求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,無論k取何實數(shù),直線y=(k-1)x+4-5k總經(jīng)過定點P,則點P與動點Q(5m-1,5m+1)的距離的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲.乙兩種商品原來的單價和為100元,因市場變化,甲商品降價10%,乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%.若設(shè)甲.乙兩種商品原來的單價分別為x元.y元,則可列方程組為_________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于、兩點,拋物線經(jīng)過、兩點,與軸的另一個交點為,連接.
(1)求拋物線的解析式及點的坐標(biāo);
(2)點 在拋物線上,連接 ,當(dāng) 時,求點的坐標(biāo);
(3)點從點出發(fā),沿線段由向運動,同時點從點出發(fā),沿線段由向運動, 、的運動速度都是每秒個單位長度,當(dāng)點到達(dá)點時,、同時停止運動,試問在坐標(biāo)平面內(nèi)是否存在點,使、運動過程中的某一時刻,以、、、為頂點的四邊形為菱形?若存在,直接寫出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1:y=kx+1,與x軸相交于點A,同時經(jīng)過點B(2,3),另一條直線l2經(jīng)過點B,且與x軸相交于點P(m,0).
(1)求l1的解析式;
(2)若S△APB=3,求P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠工人小王某月工作的部分信息如下:
信息一:工作時間:每天上午8:00~12:00,下午14:00~18:00,每月25天;
信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于45件.
生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關(guān)系見下表:
生產(chǎn)甲產(chǎn)品件數(shù)(件) | 生產(chǎn)乙產(chǎn)品件數(shù)(件) | 所用總時間(分) |
10 | 10 | 500 |
15 | 20 | 900 |
信息三:按件計酬,每生產(chǎn)一件甲產(chǎn)品可得6元,每生產(chǎn)一件乙產(chǎn)品可得10元.
根據(jù)以上信息,回答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分?
(2)小王該月最多能得多少元?此時生產(chǎn)甲、乙兩種產(chǎn)品分別多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com