如果多項式x2-2x+1=0,那么2x2-4x+5的值等于( 。
分析:根據x2-2x+1=0可以變形得到:x2-2x=-1,所求的式子2x2-4x+5=2(x2-2x)+5代入即可求解.
解答:解:∵x2-2x+1=0,
∴x2-2x=-1,
∴2x2-4x+5=2(x2-2x)+5=2×(-1)+5=3.
故選A.
點評:本題考查了代數(shù)式求值,代數(shù)式中的字母表示的數(shù)沒有明確告知,而是隱含在題設中,首先應從題設中獲取代數(shù)式x2-2x的值,然后利用“整體代入法”求代數(shù)式的值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如果關于x的多項式x2-2x+k在實數(shù)范圍內能分解因式,那么k的取值范圍是
k≤1
k≤1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對于二次三項式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對于二次三項式x2+2ax-3a2,就不能直接用公式法了,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使其成為完全平方式,再減去a2這項,使整個式子的值不變.于是有x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-4a2
=(x+a)2-(2a)2=(x+3a)(x-a)
像上面這樣把二次三項式分解因式的方法叫做添(拆)項法.
(1)請用上述方法把x2-4x+3分解因式.
(2)多項式x2+2x+2有最小值嗎?如果有,那么當它有最小值時x的值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀學習下材料,并完成下面的兩個小題.
在我們的和諧互助學習課堂上,老師跟一個小組的同學在進行激烈的討論.下面是他們的對話:
小卉:對于任意實數(shù)a的平方是非負數(shù).
小銘:對呀,也就是說a平方最小是0.即:a2≥0,當a=0時,a2=0
小紅:如果a2+b2=0,那么必有a=0且b=0,如果其中一個不為0,原等式就不成立.
老師:你們的觀點都是正確的.
(1)當x=
-1
-1
,時,多項式x2+2x+1取得最小值為
0
0
.(直接填上結果)    
(2)如果x2+2x+y2-6y+10=0,求(x+y)-2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如果多項式x2-2x+1=0,那么2x2-4x+5的值等于


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6

查看答案和解析>>

同步練習冊答案