13.如圖,△ABC和△CDE都是等邊三角形,則下列結(jié)論不成立的是( 。
A.∠BDE=120°B.∠ACE=120°C.AB=BED.AD=BE

分析 根據(jù)△CDE都是等邊三角形,得到∠CDE=60°,利用平角即可證明A;根據(jù)△ABC和△CDE都是等邊三角形,得到∠ACB=60°,∠DCE=60°,由∠ACE=∠ACB+∠DCE即可證明B;根據(jù)等邊三角形的性質(zhì)可得AC=BC,EC=DC,∠ACD=∠BCE=60°,利用“邊角邊”證明△ACD和△BCE全等,再根據(jù)全等三角形對應(yīng)邊相等證明D.

解答 解:∵△CDE都是等邊三角形,
∴∠CDE=60°,
∴∠BDE=180°-∠CDE=120°,故A正確;
∵△ABC和△CDE都是等邊三角形,
∴∠ACB=60°,∠DCE=60°,
∴∠ACE=∠ACB+∠DCE=60°+60°=120°,故B正確;
∵△ABC和△CDE都是等邊三角形,
∴AC=BC,EC=DC,∠ACD=∠BCE=60°.
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE=60°}\\{EC=DC}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴AD=BE.故D正確;
∵△ABD與△EBD不全等,
∴AB≠BE.
故選:B.

點(diǎn)評 本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),熟記等邊三角形的性質(zhì)以及全等三角形的判定方法是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)P(a-1,2a+3)關(guān)于x軸的對稱點(diǎn)在第三象限,則a的取值范圍是( 。
A.-$\frac{3}{2}$<a<1B.-1<a<$\frac{3}{2}$C.a<1D.a>-$\frac{3}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.一個多邊形的外角和與它的內(nèi)角和的比為1:3,這個多邊形的邊數(shù)是( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=kx+n(k≠0)經(jīng)過B、C兩點(diǎn).已知A(1,0),C(0,3),且BC=5.
(1)求B點(diǎn)坐標(biāo);
(2)分別求直線BC和拋物線的解析式(關(guān)系式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.電視按進(jìn)價增加35%出售,因積壓需降價處理,如果仍想獲得8%的利潤,則出售價需打8折.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,Rt△ABC的頂點(diǎn)均在格點(diǎn)上,在建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-6,1),點(diǎn)B的坐標(biāo)為(-3,1),點(diǎn)C的坐標(biāo)為(-3,3).將Rt△ABC繞點(diǎn)B順時針旋轉(zhuǎn)90°得到Rt△A1B1C1,試在圖上畫出的圖形Rt△A1B1C1的圖形,并寫出點(diǎn)A1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)此規(guī)律,m的值是8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.(1)解下列方程:
①x2-x-2=0
②3x2-2x=1
(2)已知關(guān)于x的一元二次方程x2-3x+2k=0有一個根是1,求k的值并求出方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知A(-4,n),B(2,-4)是反比例函數(shù)y=$\frac{k}{x}$的圖象和一次函數(shù)y=ax+b的圖象的兩個交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出不等式ax+b-$\frac{k}{x}$<0的解集.

查看答案和解析>>

同步練習(xí)冊答案