如圖,∠B=∠D=90゜,根據(jù)角平分線性質(zhì)填空:
(1)若∠1=∠2,則______=______.
(2)若∠3=∠4,則______=______.
(1)∵∠B=∠D=90°,
∴AB⊥BC,AD⊥DC,
∵∠1=∠2,
∴BC=CD,
故答案為:BC,DC.

(2)∵AB⊥BC,AD⊥DC,
∵∠3=∠4,
∴AB=AD,
故答案為:AB,AD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知△ABC的周長是21,OB,OC分別平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠BCA=90°,CD是高,BE平分∠ABC交CD于點(diǎn)E,EFAC交AB于點(diǎn)F,交BC于點(diǎn)G.在結(jié)論:(1)∠EFD=∠BCD;(2)AD=CD;(3)CG=EG;(4)BF=BC中,一定成立的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,若AD平分∠BAC,過D點(diǎn)作DE⊥AB,DF⊥AC,分別交AB、AC于E、F兩點(diǎn).求證:AD⊥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC中,∠C=90°,點(diǎn)O為△ABC三條角平分線的交點(diǎn),OD⊥BC于點(diǎn)D,OE⊥AC于點(diǎn)E,OF⊥AB于點(diǎn)F,且AB=13cm,BC=5cm,AC=12cm,則點(diǎn)O到三邊AB,AC,BC的距離分別為( 。
A.2cm,2cm,2cmB.3cm,3cm,3cm
C.
5
2
cm,
5
2
cm,
5
2
cm
D.2cm,3cm,4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分線,DE⊥AB于E.已知AB=6cm,求△DEB的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:∠AOB=90°,OM是∠AOB的平分線,將三角板的直角頂點(diǎn)P在射線OM上滑動(dòng),兩直角邊分別與OA、OB交于C、D.
(1)PC和PD有怎樣的數(shù)量關(guān)系是______.
(2)請你證明(1)得出的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC,AC的中垂線交CB于D,E為AC上一點(diǎn),將△CDE沿DE翻折后點(diǎn)C恰好與AB上一點(diǎn)F重合,且∠AFE=20°,則∠B的度數(shù)為( 。
A.20°B.30°C.35°D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于點(diǎn)N,交BC的延長線于點(diǎn)M,若∠A=40°.
(1)求∠NMB的度數(shù);
(2)如果將(1)中∠A的度數(shù)改為70°,其余條件不變,再求∠NMB的度數(shù);
(3)你發(fā)現(xiàn)有什么樣的規(guī)律性,試證明之.

查看答案和解析>>

同步練習(xí)冊答案