【題目】為滿足市場需求,某超市在“中秋”節(jié)前購進一種品牌月餅,每盒進價40元,超市規(guī)定每盒售價不得低于40元,根據(jù)以往銷售經(jīng)驗,當售價定為每盒45元時,預計每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.

1)試求每天的銷售量(盒)與售價(元)之間的函數(shù)關(guān)系式;

2)如果要保證超市每天的利潤為7980元,又要盡量減少庫存,超市每天應該銷售多少盒月餅?

【答案】1y=-20x+1600;(2)420.

【解析】

1)根據(jù)當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;

2)根據(jù)利潤=1盒粽子所獲得的利潤×銷售量列式整理,當利潤為7980元,且減少庫存即可求得銷售月餅的值;

1)由題意得,y=700-20x-45=-20x+1600;

2P=x-40)(-20x+1600=,

∵當,

解得: ,

且為了減少庫存,

∴定售價為59元時銷售量多,

∴當x=59時,y=-20×59+1600=420.

故答案為:420.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B(52),⊙P經(jīng)過原點O,交y軸正半軸于點A,點B在⊙P上,∠BAO=45°,圓心P的坐標為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠CAB的角平分線AD交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.

(1)求證:DE是⊙O的切線;

(2)若∠CAB=60°,DE=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.某校學生會為了了解垃圾分類知識的普及情況,隨機調(diào)查了部分學生,調(diào)查結(jié)果分為非常了解”“了解”“了解較少”“不了解四類,并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計圖.

1)求:本次被調(diào)查的學生有多少名?補全條形統(tǒng)計圖.

2)估計該校1200名學生中非常了解了解的人數(shù)和是多少.

3)被調(diào)查的非常了解的學生中有2名男生,其余為女生,從中隨機抽取2人在全校做垃圾分類知識交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊在正方形的邊上,的中點,的平分線過點,交于點,連接,交于點,對于下面四個結(jié)論:①;②;③;④,其中正確結(jié)論的序號為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系 XOY中,對于任意兩點 (,) (,)非常距離,給出如下定義: ,則點 與點 非常距離 ;若 ,則點 與點非常距離 .

例如:點 (1,2),點 (3,5),因為 ,所以點 與點 非常距離 ,也就是圖1中線段 Q與線段 Q長度的較大值(點 Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點)。

(1)已知點 A(-,0), B y軸上的一個動點,①若點 A與點 B非常距離2,寫出一個滿足條件的點 B的坐標;②直接寫出點 A與點 B非常距離的最小值;

(2)已知 C是直線 上的一個動點,①如圖2,點 D的坐標是(0,1),求點 C與點 D非常距離的最小值及相應的點 C的坐標; ②如圖3, E是以原點 O為圓心,1為半徑的圓上的一個動點,求點 C與點 E非常距離的最小值及相應的點 E和點 C的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為直角三角形,∠B90°,AC邊上取一點D,使CDAB.分別過點CCEBC,過點DDEAC,CE,DE相交于E,連結(jié)AE

1)求證:△ABC≌△CDE;

2)若∠AED20°,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,與軸交于點,,連接

1)求拋物線的解析式;

2)點在拋物線的對稱軸上,當的周長最小時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在菱形ABCD的對角線BD上,連接AE,且AE=BE,O是△ABE的外接圓,連接OB.

(1)求證:OBBC;

(2)若BD=,tanOBD=2,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案