【題目】如圖,△ABC為直角三角形,∠B90°,AC邊上取一點D,使CDAB.分別過點CCEBC,過點DDEACCE,DE相交于E,連結(jié)AE

1)求證:△ABC≌△CDE;

2)若∠AED20°,求∠ACE的度數(shù).

【答案】1)證明見解析;(2)∠ACE40°

【解析】

1)由垂直定義以及平行線的性質(zhì)得出、,再利用角邊角定理即可判定;

2)根據(jù)已知條件先求得,再由(1)的結(jié)論可推出,從而得到,進(jìn)一步利用角的和差以及直角三角形兩銳角互余即可得解.

1)證明:∵∠B90°CEBC

ABCE

∴∠BAC=∠ECD

DEAC

∴∠EDC=∠B90°

CDAB

2)∵DEAC

∴∠ADE90°

∵∠AED20°

∴∠EAD70°

∵△ABC≌△CDE

ACCE

∴∠AEC=∠CAE70°

∴∠ACE40°

故答案是:(1)見解析(2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6cm,BC12cm,點P從點A出發(fā)沿AB1cm/s的速度向點B移動;同時,點Q從點B出發(fā)沿BC2cm/s的速度向點C移動.設(shè)運動時間為t.

1)當(dāng)t2時,△DPQ的面積為 cm2;

2)在運動過程中△DPQ的面積能否為26cm2?如果能,求出t的值,若不能,請說明理由;

3)運動過程中,當(dāng) A、PQ、D四點恰好在同一個圓上時,求t的值;

4)運動過程中,當(dāng)以Q為圓心,QP為半徑的圓,與矩形ABCD的邊共有4個交點時,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作思考)畫⊙和⊙的直徑、弦,使,垂足為(如圖1).猜想所畫的圖中有哪些相等的線段、相等的劣?(除外).

1)猜想:① ;② ;③

操作:將圖1中的沿著直徑翻折,因為圓是軸對稱圖形,過圓心的任意一條直線都是它的對稱軸,所以重合,又因為,所以射線與射線重合(如圖2),于是點與點重合,從而證實猜想.

(知識應(yīng)用)圖3是某品牌的香水瓶,從正面看上去(如圖4),它可以近似看作割去兩個弓形后余下的部分與矩形組合而成的圖形(點上),其中

2)已知⊙的半徑為,,求香水瓶的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,某超市在“中秋”節(jié)前購進(jìn)一種品牌月餅,每盒進(jìn)價40元,超市規(guī)定每盒售價不得低于40元,根據(jù)以往銷售經(jīng)驗,當(dāng)售價定為每盒45元時,預(yù)計每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.

1)試求每天的銷售量(盒)與售價(元)之間的函數(shù)關(guān)系式;

2)如果要保證超市每天的利潤為7980元,又要盡量減少庫存,超市每天應(yīng)該銷售多少盒月餅?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個二次函數(shù)滿足以下條件:

①函數(shù)圖象與x軸的交點坐標(biāo)分別為A(1,0),B(x2,y2)(點B在點A的右側(cè));

②對稱軸是x=3;

③該函數(shù)有最小值是﹣2.

(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;

(2)將該函數(shù)圖象xx2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P為∠MANAM上一動點,⊙PAN于點C,與AM交于點D(點D在點P的右側(cè)),作DFANF,交⊙O于點E

1)連接PE,求證:PC平分∠APE;

2)若DE2EF,求∠A的度數(shù);

3)點B為射線AN上一點,且AB8,射線BD交⊙P于點Q,sinA.在P點運動過程中,是否存在某個位置,使得△DQE為等腰三角形?若存在,求出此時AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,弧BC所對的圓心角為,且若點P在弧BC上,點E、F分別在AB、AC 的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2(2k1)xk210有兩個實數(shù)根x1,x2

(1)求實數(shù)k的取值范圍

(2)x1,x2滿足x12x2216x1x2,求實數(shù)k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為培養(yǎng)青少年科技創(chuàng)新能力,舉辦了動漫制作活動,小明設(shè)計了點做圓周運動的一個雛型.如圖所示,甲、乙兩點分別從直徑的兩端點以順時針、逆時針的方向同時沿圓周運動.甲運動的路程與時間滿足關(guān)系:),乙以4的速度勻速運動,半圓的長度為21

1)甲運動4后的路程是多少?

2)甲、乙從開始運動到第一次相遇時,它們運動了多少時間?

查看答案和解析>>

同步練習(xí)冊答案