【題目】如圖,直線ykx2x軸,y軸分別交于BC兩點(diǎn),其中OB1

1)求k的值;

2)若點(diǎn)Ax,y)是第一象限內(nèi)的直線ykx2上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)A運(yùn)動(dòng)過程中,試寫出AOB的面積Sx的函數(shù)關(guān)系式;

3)在(2)的條件下,探索:

①當(dāng)點(diǎn)A運(yùn)動(dòng)到什么位置時(shí),AOB的面積是1

②在①成立的情況下,x軸上是否存在一點(diǎn)P,使POA是等腰三角形?若存在,請寫出滿足條件的所有P點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】(1)2;(2)S=x1,(3)①OA2,②所有P點(diǎn)的坐標(biāo)為P1(﹣2,0),P2(2,0),P3(4,0),P4(2,0).

【解析】

1)先確定出點(diǎn)B的坐標(biāo),代入函數(shù)解析式中即可求出k;

2)借助(1)得出的函數(shù)關(guān)系式,利用三角形的面積公式即可求出函數(shù)關(guān)系式;

3)①利用三角形的面積求出求出點(diǎn)A坐標(biāo);

②設(shè)出點(diǎn)Pm,0),表示出AP,OP,計(jì)算出OA,分三種情況討論計(jì)算即可得出點(diǎn)P坐標(biāo).

解:(1)∵OB1,

B1,0),

∵點(diǎn)B在直線ykx2上,

k20,

k2

2)由(1)知,k2,

∴直線BC解析式為y2x2

∵點(diǎn)Ax,y)是第一象限內(nèi)的直線y2x2上的一個(gè)動(dòng)點(diǎn),

y2x2x1),

SSAOB×OB×|yA|×1×|2x2|x1,

3)①如圖,

由(2)知,Sx1,

∵△AOB的面積是1;

x2

A2,2),

OA2,

②設(shè)點(diǎn)Pm,0),

A2,2),

OP|m|,AP

①當(dāng)OAOP時(shí),∴2|m|,∴m±2,∴P1(﹣2,0),P22,0),

②當(dāng)OAAP時(shí),∴2,∴m0m4,∴P34,0),

③當(dāng)OPAP時(shí),∴|m|,∴m2,∴P420),

即:滿足條件的所有P點(diǎn)的坐標(biāo)為P1(﹣20),P220),P34,0),P42,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖:經(jīng)過已知直線外一點(diǎn)作這條直線的垂線.

已知:直線MN和直線外一點(diǎn)P

求作:MN的垂線,使它經(jīng)過點(diǎn)P

1)分步驟寫出作圖過程;

2)說出所作直線就是求作垂線的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 4 4 的正方形網(wǎng)格中,有 5 個(gè)黑色小正方形.

1)請你移動(dòng)一個(gè)黑色小正方形,使移動(dòng)后所形成的4 4 的正方形網(wǎng)格圖形是軸對稱圖形.如:將 8 號(hào)小正方形移至 14 號(hào);你的另一種做法是將 號(hào)小正方形移至 號(hào)(填寫標(biāo)號(hào)即可);

2)請你移動(dòng) 2 個(gè)小正方形,使移動(dòng)后所形成的圖形是軸對稱圖形.你的一種做法是將 號(hào)小正方形移至 號(hào)、將 號(hào)小正方形移至 號(hào)(填寫標(biāo)號(hào)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著的路線移動(dòng)即:沿著長方形移動(dòng)一周

寫出點(diǎn)B的坐標(biāo)______

當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).

在移動(dòng)過程中,當(dāng)點(diǎn)Px軸距離為5個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, , ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰

)求點(diǎn)的坐標(biāo).

)如圖 軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以為頂點(diǎn), 為腰作等腰,過軸于點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸相交于、兩點(diǎn),與軸相交于點(diǎn),點(diǎn)、是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象過點(diǎn)、

點(diǎn)的坐標(biāo);

求一次函數(shù)的表達(dá)式;

根據(jù)圖象寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1的解析式為,直線l2的解析式為,與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,直線l1l2交于點(diǎn)C.

1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo),并求出△COB的面積;

2)若直線l2上存在點(diǎn)P(不與B重合),滿足SCOP=SCOB,請求出點(diǎn)P的坐標(biāo);

3)在y軸右側(cè)有一動(dòng)直線平行于y軸,分別與l1l2交于點(diǎn)M、N,且點(diǎn)M在點(diǎn)N的下方,y軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請直接寫出滿足條件的點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON90°,已知△ABC中,ACBCAB6,△ABC的頂點(diǎn)A、B分別在邊OM、ON上,當(dāng)點(diǎn)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),△ABC的形狀始終保持不變,在運(yùn)動(dòng)的過程中,點(diǎn)C到點(diǎn)O的距離為整數(shù)的點(diǎn)有( 。﹤(gè).

A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊答案