【題目】如圖,直線y=kx﹣2與x軸,y軸分別交于B,C兩點(diǎn),其中OB=1.
(1)求k的值;
(2)若點(diǎn)A(x,y)是第一象限內(nèi)的直線y=kx﹣2上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)A運(yùn)動(dòng)過程中,試寫出△AOB的面積S與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,探索:
①當(dāng)點(diǎn)A運(yùn)動(dòng)到什么位置時(shí),△AOB的面積是1;
②在①成立的情況下,x軸上是否存在一點(diǎn)P,使△POA是等腰三角形?若存在,請寫出滿足條件的所有P點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)2;(2)S=x﹣1,(3)①OA=2,②所有P點(diǎn)的坐標(biāo)為P1(﹣2,0),P2(2,0),P3(4,0),P4(2,0).
【解析】
(1)先確定出點(diǎn)B的坐標(biāo),代入函數(shù)解析式中即可求出k;
(2)借助(1)得出的函數(shù)關(guān)系式,利用三角形的面積公式即可求出函數(shù)關(guān)系式;
(3)①利用三角形的面積求出求出點(diǎn)A坐標(biāo);
②設(shè)出點(diǎn)P(m,0),表示出AP,OP,計(jì)算出OA,分三種情況討論計(jì)算即可得出點(diǎn)P坐標(biāo).
解:(1)∵OB=1,
∴B(1,0),
∵點(diǎn)B在直線y=kx﹣2上,
∴k﹣2=0,
∴k=2
(2)由(1)知,k=2,
∴直線BC解析式為y=2x﹣2,
∵點(diǎn)A(x,y)是第一象限內(nèi)的直線y=2x﹣2上的一個(gè)動(dòng)點(diǎn),
∴y=2x﹣2(x>1),
∴S=S△AOB=×OB×|yA|=×1×|2x﹣2|=x﹣1,
(3)①如圖,
由(2)知,S=x﹣1,
∵△AOB的面積是1;
∴x=2,
∴A(2,2),
∴OA=2,
②設(shè)點(diǎn)P(m,0),
∵A(2,2),
∴OP=|m|,AP=,
①當(dāng)OA=OP時(shí),∴2=|m|,∴m=±2,∴P1(﹣2,0),P2(2,0),
②當(dāng)OA=AP時(shí),∴2=,∴m=0或m=4,∴P3(4,0),
③當(dāng)OP=AP時(shí),∴|m|=,∴m=2,∴P4(2,0),
即:滿足條件的所有P點(diǎn)的坐標(biāo)為P1(﹣2,0),P2(2,0),P3(4,0),P4(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖:經(jīng)過已知直線外一點(diǎn)作這條直線的垂線.
已知:直線MN和直線外一點(diǎn)P.
求作:MN的垂線,使它經(jīng)過點(diǎn)P.
(1)分步驟寫出作圖過程;
(2)說出所作直線就是求作垂線的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 4 4 的正方形網(wǎng)格中,有 5 個(gè)黑色小正方形.
(1)請你移動(dòng)一個(gè)黑色小正方形,使移動(dòng)后所形成的4 4 的正方形網(wǎng)格圖形是軸對稱圖形.如:將 8 號(hào)小正方形移至 14 號(hào);你的另一種做法是將 號(hào)小正方形移至 號(hào)(填寫標(biāo)號(hào)即可);
(2)請你移動(dòng) 2 個(gè)小正方形,使移動(dòng)后所形成的圖形是軸對稱圖形.你的一種做法是將 號(hào)小正方形移至 號(hào)、將 號(hào)小正方形移至 號(hào)(填寫標(biāo)號(hào)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要建一個(gè)如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著的路線移動(dòng)即:沿著長方形移動(dòng)一周.
寫出點(diǎn)B的坐標(biāo)______
當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).
在移動(dòng)過程中,當(dāng)點(diǎn)P到x軸距離為5個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, , ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰.
()求點(diǎn)的坐標(biāo).
()如圖, 為軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以為頂點(diǎn), 為腰作等腰,過作軸于點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸相交于、兩點(diǎn),與軸相交于點(diǎn),點(diǎn)、是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象過點(diǎn)、.
求點(diǎn)的坐標(biāo);
求一次函數(shù)的表達(dá)式;
根據(jù)圖象寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1的解析式為,直線l2的解析式為,與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,直線l1與l2交于點(diǎn)C.
(1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo),并求出△COB的面積;
(2)若直線l2上存在點(diǎn)P(不與B重合),滿足S△COP=S△COB,請求出點(diǎn)P的坐標(biāo);
(3)在y軸右側(cè)有一動(dòng)直線平行于y軸,分別與l1,l2交于點(diǎn)M、N,且點(diǎn)M在點(diǎn)N的下方,y軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請直接寫出滿足條件的點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,已知△ABC中,AC=BC=AB=6,△ABC的頂點(diǎn)A、B分別在邊OM、ON上,當(dāng)點(diǎn)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),△ABC的形狀始終保持不變,在運(yùn)動(dòng)的過程中,點(diǎn)C到點(diǎn)O的距離為整數(shù)的點(diǎn)有( 。﹤(gè).
A.5B.6C.7D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com