【題目】冬至是一年中太陽(yáng)光照射最少的日子,如果此時(shí)樓房最低層能采到陽(yáng)光,一年四季整座樓均能受到陽(yáng)光照射,所以冬至是選房買(mǎi)房時(shí)確定陽(yáng)光照射的最好時(shí)機(jī).吳江某居民小區(qū)有一朝向?yàn)檎戏较虻木用駱牵摼用駱堑囊粯鞘歉邽?/span>米的小區(qū)超市,超市以上是居民住房,現(xiàn)計(jì)劃在該樓前面米處蓋一棟新樓,已知吳江地區(qū)冬至正午的陽(yáng)光與水平線夾角大約為.(參考數(shù)據(jù)在,

中午時(shí),若要使得超市采光不受影響,則新樓的高度不能超過(guò)多少米?(結(jié)果保留整數(shù))

若新建的大樓高米,則中午時(shí),超市以上的居民住房采光是否受影響,為什么?

【答案】(1) 不超過(guò)米;(2)見(jiàn)解析.

【解析】

(1)連接AC,在RtABC中,利用銳角三角函數(shù)表示出線段AB的長(zhǎng),然后保留整數(shù)即可求得樓高的范圍;

(2)首先過(guò)點(diǎn)EBC平行線角AB與點(diǎn)F.在RtAFG中,利用正切函數(shù)求得GF的長(zhǎng),即為使得超市采光不受影響,兩樓應(yīng)至少相距的米數(shù).

(1)連接

中,

,

,

當(dāng)樓高超過(guò)時(shí),光線照到點(diǎn)的上方,超市采光受影響,又結(jié)果需要保留整數(shù),所以樓高不超過(guò)米;

設(shè)居民樓底與超市頂端交界點(diǎn)為,

過(guò)點(diǎn)平行線角與點(diǎn),設(shè)過(guò)新樓頂?shù)墓饩交直線與點(diǎn),則,

中,,

∴超市以上的居民住房采光不受影響.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,ABC中,AC=BC,以BC為直徑的O交AB于E,過(guò)點(diǎn)E作EGAC于G,交BC的延長(zhǎng)線于F.

(1)求證:AE=BE;

(2)求證:FE是O的切線;

(3)若FE=4,F(xiàn)C=2,求O的半徑及CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:A÷).

1)化簡(jiǎn)A;

2)當(dāng)x2+y213xy=﹣6時(shí),求A的值;

3)若|xy|+0A的值是否存在,若存在,求出A的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),完成下列各題:

將函數(shù)關(guān)系式用配方法化為的形式,并寫(xiě)出它的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸.

在直角坐標(biāo)系中,畫(huà)出它的圖象

根據(jù)圖象說(shuō)明:當(dāng)取何值時(shí),的增大而增大?

當(dāng)取何值時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)Dm,m+8)在第二象限,點(diǎn)B0,n)在y軸正半軸上,作DAx軸,垂足為A,已知OAOB的值大2,四邊形AOBD的面積為12

1)求mn的值.

2)如圖2,CAO的中點(diǎn),DCAB相交于點(diǎn)E,AFBD,垂足為F,求證:AFDE

3)如圖3,點(diǎn)G在射線AD上,且GAGB,HGB延長(zhǎng)線上一點(diǎn),作∠HANy軸于點(diǎn)N,且∠HAN=∠HBO,求NBHB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+3交x軸于A點(diǎn),將一塊等腰直角三角形紙板的直角頂點(diǎn)置于原點(diǎn)O,另兩個(gè)頂點(diǎn)M、N恰落在直線y=x+3上,若N點(diǎn)在第二象限內(nèi),則tan∠AON的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),交y軸于點(diǎn)C;

(1)求拋物線的解析式(用一般式表示);

(2)點(diǎn)Dy軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D使?若存在請(qǐng)直接給出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,PO⊥AB,PE⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)C,切點(diǎn)為E,AEPO于點(diǎn)F.

(1)求證:PEF是等腰三角形;

(2)在圖中,作EH⊥AB,垂足為H,作弦BD∥PC,交EH于點(diǎn)G.若EG=5,sinC=,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)A(﹣3,﹣3).

(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;

(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點(diǎn)B(﹣6,m),與x軸交于點(diǎn)C,求m的值和直線BC的表達(dá)式;

(3)在(2)的條件下,直線BCy軸交于點(diǎn)D,求以點(diǎn)A,B,D為頂點(diǎn)的三角形的面積;

(4)在(3)的條件下,點(diǎn)A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案