(2010•北海)如圖,A、B是雙曲線y=
k
x
上的點,分別過A、B兩點作x軸、y軸的垂線段.S1,S2,S3分別表示圖中三個矩形的面積,若S3=1,且S1+S2=4,則k值為 ( 。
分析:根據(jù)S1+S2=4,S1=S2,得出S1,再根據(jù)S3=1,得出S1+S3得值,即可求出k=3.
解答:解:∵S1+S2=4,
∴S1=S2═2,
∵S3=1,
∴S1+S3=1+2=3,
∴k=3
故選C.
點評:主要考查了反比例函數(shù)y=
k
x
中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)?疾榈囊粋知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2010•北海)如圖,正方體的俯視圖是 (  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•北海)如圖表示不等式x-2≥0的解集,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•北海)如圖,在Rt△ABC中,∠C=90°,作AB的垂直平分線,交AB于D,交AC于E,連接BE.已知∠CBE=40°,則∠A=
25
25
 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•北海)如圖,已知⊙O上A、B、C三點,∠BAC=30°,D是OB延長線上的點,∠BDC=30°,⊙O半徑為
2

(1)求證:DC是⊙O的切線;
(2)如果AC∥BD,證明四邊形ACDB是平行四邊形,并求其周長;
(3)在圖1中,如果AO⊥BO,BO與AC交于E,如圖2,求S△ABC:S△AEB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•北海)如圖,在△OAB中,AO=AB,∠OAB=90°,點B坐標為(10,0).過原點O的拋物線,又過點A和G,點G坐標為(7,0).
(1)求拋物線的解析式;
(2)邊OB上一動點T(t,0),(T不與點O、B重合)過點T作OA、AB的垂線,垂足分別為C、D.設(shè)△TCD的面積為S,求S的表達式(用t表示),并求S的最大值;
(3)已知M(2,0),過點M作MK⊥OA,垂足為K,作MN⊥OB,交點OA于N.在線段OA上是否存在一點Q,使得Rt△KMN繞點Q旋轉(zhuǎn)180°后,點M、K恰好落在(1)所求拋物線上?若存在請求出點Q和拋物線上與M、K對應(yīng)的點的坐標,若不存在請說明理由.

查看答案和解析>>

同步練習冊答案